
Mappings Between Domain Models in Answer Set
Programming?

Stefania Costantini1, Andrea Formisano2, and Eugenio G. Omodeo1

1 Dipartimento di Informatica, Università degli Studi di L’Aquila, L’Aquila, I-67100 Italy,
stefcost@di.univaq.it omodeo@di.univaq.it

2 Universit̀a degli Studi di Perugia, Perugia, I-06100 Italy,formis@dipmat.unipg.it

Abstract. The so-called Global-as-View approach constitutes an effective pro-
posal to the design of data integration systems. The integration is achieved by
means of a global conceptual data model. Consequently, the user is provided
with a unified view of the data and he can query such a global schema ignoring
the location and structure of the data sources.
By exploiting Answer Set Programming, this work aims at demonstrating that
logic programming is a suitable paradigm for defining and implementing query
answering techniques in the Global-as-View approach. We propose a suitable
formalization and a working inference engine for effectively answering queries
posed to the global schema.

Introduction

In an emerging scenery where most applications are Web-based, and in the perspec-
tive of the Semantic Web, a novel tendency of computational logic is that of providing
formalisms and tools for a context where knowledge can be shared in a distributed en-
vironment.

In the field of databases, information integration systems allow queries to be an-
swered using a set of data sources on the WWW or across several databases in an orga-
nization. The Semantic Web should go one step further, toward an architecture where
software agents can coordinate tasks using rich ontologies.

A crucial aspect where computational logic can play a role is the ability to map
between different models of the same or related domains. It is unlikely that a global
ontology or schema can be developed across several though related contexts: in practice,
multiple ontologies and schemas will be developed by independent organizations, and
coordination will require mappings between the different models. Such a mapping will
be a set of formulae that provide the semantic relationships between the concepts in
the models. If knowledge and data are to be shared, the problem of mapping between
models is as fundamental as modeling itself. In current systems, mappings between
models are provided manually in a labor-intensive and error-prone process.

? Research partially funded by MIUR 40% projectAggregate- and number-reasoning for computing: from decision algo-
rithms to constraint programming with multisets, sets, and mapsand by theInformation Society Technologies programme
of the European Commission, Future and Emerging Technologiesunder the IST-2001-37004 WASP project.

Currently, various approaches are being developed and proposed for integrating dif-
ferent data sources. As pointed out in [6], these approaches should wishfully enjoy some
useful features recalled here below.

Clear semantics: The meaning of mappings should be formally defined. The seman-
tics will provide a basis for reasoning about mappings: e.g., determining whether two
mappings are equivalent or if a certain mapping formula is entailed by a mapping.

Accommodate incompleteness: Incompleteness can arise in various ways: (1) be-
cause of loss of information when the two models cover different domains, and (2) when
a certain concept can be mapped between the models, but the mapping is unknown or
hard to specify (3) when the two models cover similar domains, but the integrity con-
straints and/or the representations of data are different, and hence there is a gap to be
filled. In real applications, cases will often arise when a mapping is incomplete, but still
may suffice for the task at hand. Thus, being able to exploit incomplete mappings is one
of the important issues of interest.

Allow heterogeneity: By nature, mappings between models will involve multiple
representation languages. Therefore, a mapping language needs to be able to represent
mappings between models in different languages.

As a first step, [6] considers mappings between a pair of relational-database models
(i.e., schemas), and in this paper we follow the same line.

In the relational context, a simple but effective approach to data integration systems
through a conceptual data model is the so-calledGlobal-as-Viewapproach. In particu-
lar, the user is provided with a unified view of the data, calledglobal (or ‘mediated’)
schema. The user queries the global schema, ignoring the location and structure of the
data sources, and leaving to the system the task of merging and reconciling the data at
the sources. The problem of query answering in data integration systems is investigated
in [2] where the global schema is expressed in terms of an extended Entity-Relationship
model, and the mapping between the global schema and the sources is specified by
adopting the Global-as-View approach. The problem of query answering is that, when
the global schema is expressed in terms of a conceptual data model, even of a very sim-
ple one, query processing becomes difficult even in the Global-as-View approach. [2]
demonstrates that the problem of incomplete information arises in this case too, because
it may be the case that there is more than one legal database obtainable according to the
given mapping.

In this paper we aim at demonstrating that logic programming is a suitable paradigm
for defining and implementing query answering techniques in the Global-as-View ap-
proach. We propose a suitable formalization and a working inference engine for effec-
tively answering queries posed to the global schema of a data integration system.

In particular, our formalization makes use ofAnswer Set Programming, which is a
new paradigm of logic programming where solutions to a problem are represented by
Answer Sets (also called stable models), and not by answer substitutions produced in
response to a query. This implies that in case of incomplete or ambiguous information,
all possible consistent answers are provided. In this context, if there are several legal
databases corresponding to the source data in a way consistent with a given mapping,

all of them will be separately considered in query answering, and all possible alternative
answers will be provided.

1 Mappings between Domain Models

In [6] the following characterization of mapping between models and of mapping satis-
faction are proposed.

Definition 1. Let T1 and T2 be models in the languagesL1 andL2, respectively. A
MAPPING betweenT1 and T2 may include a helper modelT3 (in languageL3), and
consists of a set of formulas each of which is over(T1, T2), (T1, T3), or (T2, T3).

Definition 2. LetM be a mapping between the modelsT1 andT2, and assume thatM
also involves a helper modelT3. Let Ii be an interpretation of an extension ofTi for
i = 1, 2, 3. The triplet(I1, I2, I3), SATISFIESthe mappingM if Ii is a logical model of
Ti (for i = 1, 2, 3), and for each formulae ∈M, {I1, I2, I3} |= e.

Several properties of mappings are worth studying because they are needed to de-
cide whether a mapping is adequate for a particular task at hand. The main property is
query answerability. A mapping between two models rarely maps all the concepts in one
model to all concepts in the other. Instead, mappings typically lose some information
and can be partial or incomplete. However, incomplete mappings can be adequate in
many cases. Query answerability is a formalization of this property. A second property
can be mapping inference, and is aimed at providing a reasoning tool for determin-
ing whether mappings are equivalent. Also, mapping composition should enable one to
create mappings between models that are related by intermediate models.

Below is the definition of query answerability given in [6].

Definition 3. LetM be a mapping between modelsT1 andT2 and an optional helper
modelT3, and letQ be a query overT1. We say that the mappingM enablesQUERY

ANSWERABILITY of Q if the following holds.

LetT ′2 be an extension ofT2. LetI be the set of interpretations ofT1 for which there
exists an interpretationI3 of T3 and a logical modelI2 of T ′2 such that(I1, I2, I3) |=
M. Then, for every tuplēa of constants, eitherI1 |= Q(ā) for everyI1 ∈ I or I1 6|=
Q(ā) for everyI1 ∈ I.

2 The Global-as-View Approach

According to [2] adata integrationsystemI is a triple〈G,S,MG,S〉, whereG is the
global schema,S is thesource schema, andMG,S is the mapping betweenG andS. The
source schemaS is constituted by the schemes of the source relations. In this context
we assume that the sources are expressed as relational databases. The mappingMG,S
betweenG andS is given by associating with each conceptC (either entity, relation-
ship, or attribute) in the global schema a queryVC , of the same arity of the predicate

associated withC, over the sources. No constraints are imposed on the language used
to express queries in the mapping: it suffices to ensure that such a language is able to
express computations over relational databases.

In order to assign semantics to a data integration systemI = 〈G,S,MG,S〉, [2]
starts by considering a source database forI, i.e., a databaseD for the source schema
S. Based onD, they specify which is theinformation contentof the global schemaG.
We call global database forI any database forG. A global databaseB for I is said to
be legalwith respect toD, or, simply, legal forI with respect toD, if:

- B is legal with respect toG,

- for each element e ofG, the set of tupleseB thatB assigns toe is coherent with the
set of tuples computed by the associated queryVe overD, i.e.,VDe ⊆ eB.

The above definition implies that sources are regarded as being sound: the data they
provide to the integration system satisfy the global schema, but are not necessarily
complete.

The semantics of a data integration systemI with respect to a source databaseD
for I, denotedsem(I,D), is the set of global databases that are legal forI with respect
toD. Given a source databaseD, different situations are possible. The first case is when
no legal global database exists. This happens, in particular, when the data at the sources
retrieved by the queries associated to the elements of the global schema do not satisfy
the functional attribute constraints. The second case occurs when several legal global
databases exist. This happens, for example, when the data at the sources retrieved by
the queries associated to the global relations do not satisfy the is-a relationships of
the global schema. In this case, it may happen that several ways exist to add suitable
objects to the elements ofG in order to satisfy the constraints. Each such way yields
a legal global database. The problem of incomplete information in the Global-as-View
approach is overlooked in traditional data integration systems, which either express the
global schema as a set of plain relations, or consider the sources as being exact.

An algorithm for computing the set of certain answers to queries posed to a data
integration system can be found in [2]. The key feature of this algorithm is to reason
about both the query and the conceptual global schema in order to infer which are
the certain answers to the query. Indeed, the authors observe that a simple unfolding
strategy does not work, and several complications arise due to the potential existence
of different legal mappings. In the following sections, we will show that Answer Set
Programming allows one to define a mapping representation language and an inference
engine, that works fine also in presence of different legal mappings, due to the very
nature of the formalism.

3 Answer Set Programming

Answer Set Programming (ASP) is an emergent, alternative style of logic program-
ming [7,5] based on the Answer Set (or equivalently Stable Model) semantics [3,4]:
each solution to a problem is represented by an Answer Set (also called a Stable Model)
of a deductive database/function–free logic program encoding the problem itself. The

Answer Set semantics is a view of logic programs as sets of inference rules (more
precisely, default inference rules). Alternatively, one can see a program as a set of con-
straints on the solution of a problem, where each answer set represents a solution com-
patible with the constraints expressed by the program. Consider for instance the simple
program{q ← notp. p← notq.}: the first rule is read as “assuming thatp is false, we
canconcludethatq is true.” This program has two answer sets. In the first one,q is true
whereasp is false; in the second one,p is true whereasq is false. Then, in ASP we are
able to manage cyclic negative dependencies that represent incomplete knowledge or
denote the possibility of different alternatives, by representing each consistent choice
by means of an Answer Set. Consequently, a program in ASP may have none, one, or
several answer sets.

To solve a problem using ASP means to write a logic program whose answer sets
correspond to solutions, and then find a solution using an answer set solver [1]. The
basic approach to writing such a program is known as the “generate-and-test” strategy.
First one writes a group of rules for defining “potential solutions” i.e., an easy-to-
describe superset of the set of solutions. Then one adds a group of constraints that rule
out the potential solutions that are not solutions.

Consider, for instance, the use of this method for finding the three-colorings of a
graph (the program below is in the syntax of the SMODELS solver). The statement
node(0..3) is a shortcut for the definition of a set of facts, namelynode(0),. . . ,node(3).
The symbol “|” denotes exclusive disjunction (which is syntactic sugar, since it might
be expressed through negation), and allows us to state that a node can be assigned one
of the three colorsred, blue, green, that are introduced in the factscol. This defines all
possible colorings of the graph. It remains to be stated that we wish to select only the
colorings where adjacent nodes have a different color.

The rule with empty head is aconstraint, whose conditions cannot be all true, oth-
erwise they would imply falsity. It is again syntactic sugar, since a constraint, say:- a,
not b, c, can be rephrased asf :- not f, a, not b, c, wheref is a fresh atom not appear-
ing elsewhere in the program: in fact, in the Answer Set semantics no true atom can
be supported by the negation of another true atom, and in particular atomf cannot be
supported by its own negation; consequently eitherf is forced to be false, or there is no
Answer Set; forf to be false, some of the other conditions must be false, i.e., the con-
ditions cannot be all true. In particular, in this program the constraint states that there
cannot be two adjacent nodes (nodes connected by an edge) to which the same color is
assigned.

The rule with head in brackets, calledweight constraint, means that for allX which
is a node, the propertycolor(X,C) can take one and only one value forC, among those
defined by predicatecol(C). The general form of such a kind of clauses is

n{〈property def〉:〈range def〉}m :-〈search space〉
where: the conditions〈search space〉 in the body define the set of objects of the do-
main to be checked; the atom〈property def〉 in the head defines the property to be
checked; the conjunction〈range def〉 defines the possible values that the property may
take on the objects defined in the body, namely by providing a conjunction ofk unary
predicates each defining a range for one of thek variables that occur in〈property def〉

but not in〈search space〉; n andm are the minimum and maximum number of values
that the specified property may take on the specified objects.

Finally, hide P is a directive whose obvious meaning is that of instructing the solver
to omit atoms concerningP when returning the Answer Sets.

col(red). col(blue). col(green).
node(0..3).
edge(0,1). edge(1,2). edge(2,0). edge(2,3). edge(1,3).
color(X,red) | color(X,blue) | color(X,green) :- node(X).
:- edge(X,Y), col(C), color(X,C), color(Y,C).
1{color(X,C): col(C)}1 :- node(X).
hide node(X). hide edge(X,Y). hide col(C).

When fed with this program, SMODELS (and, with similar syntax, any of the
solvers) will give the answers:
Answer: 1. Stable Model: color(0,green) color(1,blue) color(2,red) color(3,green)
Answer: 2. Stable Model: color(0,blue) color(1,green) color(2,red) color(3,blue)
Answer: 3. Stable Model: color(0,green) color(1,red) color(2,blue) color(3,green)
Answer: 4. Stable Model: color(0,red) color(1,green) color(2,blue) color(3,red)
Answer: 5. Stable Model: color(0,red) color(1,blue) color(2,green) color(3,red)
Answer: 6. Stable Model: color(0,blue) color(1,red) color(2,green) color(3,blue)

where each Answer Set corresponds to one of the possible 3-colorings of the graph.

The reason why this approach is particularly well suited for representing mappings
between data models is exactly that the query answering problem can be coped with
also in the presence of incomplete/ambiguous knowledge by making all the different
possible answers to queries explicit.

4 The Global-as-View Approach in Answer Set Programming

In this paper, we implement the Global-as-View approach and a query-answering al-
gorithm in Answer Set Programming along the lines of [6]. In particular, we define a
helper model with suitable meta-level aspects, so as to define an inference engine that
models all the basic features of relational databases, thus enforcing query answerability.

In what follows, we assume that the global schema is expressed by means of an (ex-
tension of the) Entity-Relationship modeling language. We assume also the local/source
schema to be a relational schema.

Representation of schemas and models.As mentioned, in representing a mapping
between the global schema and the source schema we make use of an auxiliary helper
model. Such a helper model is formalized in ASP in terms of the predicatesentity(E,X),
relat(R,X,Y), attr(A,X,Y), andschema(R,E1,E2):

- any entity is described by the predicateentity(E,X), whereE is an integer number and
X is intended to range over the instances of the specific entity. Roughly speaking,E
should be intended as an “internal name” for the entity in the helper model.

Student

Person

University

Organization����
PPPP

PPPP
����Member

����
PPPP

PPPP
����Enrolledage◦

6is ais a

�
�
�
���

Fig. 1.Example of global schema

Person(x) ← s1(x) Student(x) ← s3(x, y) ∨ s4(x, z)
Organization(x) ← s2(x) University(x) ← s5(x)

Member(x, y) ← s7(x, z), s8(z, y) Enrolled(x, y) ← s4(x, y)
age(x, y) ← s3(x, y) ∨ s6(x, y, z)

Fig. 2.Sample mapping for the global schema of Figure 1

- Any k-ary relationship is described by the predicaterelat(R,X1,. . . ,Xk). As before,
R is an integer number identifying the specific relationship, whileX1,. . . ,Xk range
over the instances of the entities participating in the relationship.

- Any attribute is named by an integer numberA. Its value (Y) corresponding to a
specific instanceX of the entity is assigned by means of the factattr(A,X,Y).

- The predicateschema(R,E1,E2) asserts that entitiesE1 and E2 participate in the
relationshipR. (In this caseR, E1, andE2 are integer numbers identifying relation-
ships and entities.)

Some auxiliary predicates can be used to designate the integer numbers to be used as
names for objects, for instance:

e(1..5). % range for entity numbers
r(1..5). % range for relation numbers
a(1..5). % range for attribute numbers

Notice that the use of naming for objects of the schemas allows us to write meta-
rules coping with general concepts, and then instantiate them on the case at hand. The
approach presents valuable advantages concerning elaboration-tolerance:

- the rules are defined for classes of constructs, thus they are generally applicable;

- this makes it easier to cope with changes in the format of global schema.

For demonstrating the approach on a practical case, we take the example proposed
in [2], represented by the schema in Figure 1. This will be our working example in what
follows. Through it, we will illustrate our ASP-based approach.

Example 1.Figure 1 shows the global schemaG1 of a data integration systemI1 =
〈G1,S1,M1〉, whereage is a functional attribute,Student has a mandatory participa-
tion in the relationshipEnrolled,3 Enrolled is-aMember, andUniversity is-aOrgani-
zation. The schema models persons who can be members of one or more organizations,
and students who are enrolled in universities. Suppose thatS1 is constituted bys1, s2,

3 Mandatoryparticipations are depicted by using thicker lines.

s3, s4, s5, s6, s7, s8, and that the mappingM1 can be defined as in Figure 2 (cf. Def-
inition 1). The redefinition of the global schema of Figure 1 in terms of the helper
(meta-)constructs is performed as follows:

person(X):- entity(1,X).
organization(X):- entity(2,X).
member(X,Y):- schema(1,E1,E2),entity(E1,X),entity(E2,Y),relat(1,X,Y).
student(X):- entity(3,X).
university(X):- entity(4,X).
enrolled(X,Y):- schema(2,E1,E2),entity(E1,X),entity(E2,Y),relat(2,X,Y).
age(X,Y):- val(X),val(Y),attr(1,X,Y).

While the following is the logical definition of global schema (it specifies domain
and codomain of relationships in terms of entity numbers):
schema(1,1,2). % entities 1 (person) and 2 (organization) participate in relationship 1 (member)
schema(2,3,4). % entities 1 (student) and 2 (university) participate in relationship 2 (enrolled)

2

The introduction of a helper model involving a naming of the objects of the schemas
allows us to tersely describe integrity constraints. For instance, the following two
clauses define left and right projections for each relationship in the model (notice that
we restrict our treatment to dyadic relationships in the global schema, the generalization
to generic arity is easy):

proj relat1(R,X):- schema(R,E1,E2),entity(E1,X),entity(E2,Y),relat(R,X,Y).
proj relat2(R,Y):- schema(R,E1,E2),entity(E1,X),entity(E2,Y),relat(R,X,Y).

Analogously, ISA relations, both for entities and for relationships, are easily as-
serted by explicitly referring to the names in helper model: assertionis a r(R1,R2)
means relationshipR1 IS A R2. Similarly, an assertion of the formis a e(E1,E2) means
entity E1 IS A E2:

We also introduce suitable meta-rules for ISA chaining in the helper model:
relat(M,X,Y):- schema(N,E1,E2), entity(E1,X), entity(E2,Y), is a r(N,M), relat(N,X,Y).
entity(M,X):- val(X), is a e(N,M), entity(N,X).

The treatment of mandatory participation and functionality constraints is also imme-
diate. For example, mandatory participations is asserted by means of two predicates: as-
sertionmandatory1(E1,R) (respectively,mandatory2(E2,R)) means that entityE1 (resp.,
E2) must participate in a relationshipR as the first (resp., second) component. These
assertion are handled by suitable clauses, namely:

:- entity(E,V), schema(R,E,E1), entity(E1,V1), mandatory1(E,R), not proj relat1(R,V).
:- entity(E,V), schema(R,E1,E), entity(E1,V1), mandatory2(E,R), not proj relat2(R,V).

whose aim is to ensure that whenever an entityE has a mandatory participation in a
relationshipR as first/second argument, each value ofE must belong to the left/right
projection ofR. Consequently, no illegal database, i.e., answer set violating the con-
straint, can be produced.

Example 2.In our working example we assert:
is a r(2,1). % enrolled ISA member
is a e(3,1). % student ISA person

is a e(4,2). % university ISA organization
mandatory1(3,2). % mandatory participation of student in enrolled

2

Integrity constraints for functionality are imposed by assertions of the formfunc-
tional1(R) (resp.functional2(R)). This assertion, as expected, says that the relationship
R must be single-valued on its first (resp. second) argument (clearly, the very same
treatment can be generalized to describe multi-functions with bounds on the cardinality
of images). The following clauses exploit weight-constraints to express functionality
constraints. Consequently, no illegal database, i.e., answer set violating the constraint,
can be produced.

:- schema(R,E1,E2), functional1(R), entity(E1,V1), entity(E1,V2),
V1 != V2, proj relat1(R,V1), proj relat1(R,V2).

:- schema(R,E1,E2), functional2(R), entity(E2,V1), entity(E2,V2),
V1 != V2, proj relat2(R,V1), proj relat2(R,V2).

Incompleteness of information. Consider a mappingM between a global schemaG
and a source schemaS. It may be the case that more than one legal global database
exists w.r.t. a specific global query. In particular, this may happen when an ISA rela-
tion imposed at the global level does not reflect an analogous property of the source
schema (notice that this is the case for our working example). Consequently, there may
be several manners to (correctly) answer a global query. It may be necessary to add
suitable objects to the global database in order to satisfy the ISA constraint. Such an
“extension” of the answer is somehow arbitrary: because only incomplete information
can be drawn from the source schema, there may be no unique choice for such “ex-
tra” objects. In other words, the query-answering process should be able to fill the gap
between global and source models by providing all legal global databases which are
coherent with the (partial) information available at the source level. As we will see, this
is one of the achievements of our approach.

Example 3.Consider the mapping of Figure 2 and a source database wheres4 stores
(t1,u1) and(t2,a1), while u1, u2, u3, andu4 are the only tuples stored ins5. The global
schema (cf. Figure 1) imposes a mandatory participation ofStudent to the relationship
Enrolled. By extracting information from the source schema through the mapping, we
can only discover that:

- t1 is enrolled inu1;

- t2 should be enrolled. However, it is unknown which is the corresponding university;

- There are four distinct known universities:u1, u2, u3, andu4.

By assuming that any specific student can be enrolled in at most one university (i.e.,
Enrolled is functional), we would like this knowledge to be so extended as to associate
t2 to one of the known universities. 2

The use of ASP as inference framework for modeling mappings and answering
global queries allows the user to obtain all possible legal global databases which are
coherent with the information extracted from the source level. This aim is achieved by

introducing (in the helper model) a specific object (denoted byany) that represents an
unknown value.

The following clauses manage the special valueany and characterize all extensions of a
relationshipR obtainable by considering any of the members of the domain/codomain
entity. In particular, the use of weight-constraints ensures that all these extensions are
obtained by adding a single object to the (global) relationship. Notice that, in order
to avoid confusion among couples of entities involved in different relationships, each
entity must have an associatedany value, to be used only in the context of that relation-
ship. To this aim, we are able to associate the neededany values to entities by means of
assertions of the formanyval(E2,A).

1{vals2(R,Y):val(Y)}1:- val(X),schema(R,E1,E2),relat(R,X,A),anyval(E2,A),entity(E2,Y).
1{vals1(R,Y):val(X)}1:- val(Y),schema(R,E1,E2),relat(R,A,X),anyval(E1,A),entity(E1,X).
relat(R,X,Y):- schema(R,E1,E2),entity(E1,X),vals1(R,X),relat(R,A,Y),anyval(E1,A),entity(E2,Y).
relat(R,X,Y):- schema(R,E1,E2),entity(E1,X),vals2(R,Y),relat(R,X,A),anyval(E2,A),entity(E2,Y).

Correspondence between global schema and source schema.The correspondence
between the global schema (in abstract form, i.e., through the helper schema) and the
source schema is given by means of suitable clauses that establish a connection between
the objects of the helper model and the data sources.

Example 4.Consider our working example (cf. Figure 2). This is the rendering of the
global schema through the helper schema:

entity(1,X):- val(X),s(1,X).
entity(2,X):- val(X),s(2,X).
relat(1,X,Y):- val(X),val(Y),val(Z),s(7,X,Z),s(8,Z,Y).
entity(3,X):- val(X),val(Y),s(3,X,Y).

% student (i.e. entity 3) is described implicitly as the domain of an unknown relationship
entity(3,X):- val(X),val(Z),s(4,X,Z).

% student is described implicitly as the domain of enrolled
entity(4,X):- val(X),s(5,X).
relat(2,X,Y):- val(X),val(Y),s(4,X,Y).
attr(1,X,Y):- val(X),val(Y),s(3,X,Y).
attr(1,X,Y):- val(X), val(Y), val(Z), s(6,X,Y,Z).

2

We assume that the instance of the source schema is given by using the predicatesval
and isValuen, in terms of a number of asserted facts in the ASP program. In particu-
lar, val describes all the values occurring in the instance of the source database under
consideration. The predicateisValue1 associates such values to specific entities of the
source schema (similarly,isValue2 andisValue3, manage values for source relations of
arity 2 and 3, respectively).

Example 5.This is a description of a possible instance for the source schema of Exam-
ple 1 and Figure 2:

source(1..8).
s(N,A):- source(N), isValue1(N,A).
s(N,A,B):- source(N), isValue2(N,A,B).
s(N,A,B,C):- source(N), isValue3(N,A,B,C).

isValue1(1,p1). isValue1(1,p2). isValue1(2,o1).
isValue1(5,u1). isValue1(5,u2). isValue1(5,u3). isValue1(5,u4).
isValue2(4,t1,u1). isValue2(4,t2,any4). isValue2(8,i1,o1). isValue2(8,i2,u1).
isValue2(7,p1,i1). isValue2(7,p2,i2). isValue2(7,p3,i3).

These facts represent the following instance of the relational source schema: the rela-
tion s1 contains the tuplesp1 andp2; s2 contains the tupleo1; s5 contains the tuplesu1,
u2, u3, andu4; s4 contains the tuples(t1, u1) and(t2, a1) (notice thata1 is not ins5);
and so on. In order to make possible the grounding process performed by SMODELS,
we need to list (at least) all possible values occurring in the source instance:

val(c1). val(c2). val(c3). val(c4). val(s1). val(s2). val(s3). val(s4).
val(e1). val(e2). val(e3). val(e4). val(i1). val(i2). val(i3).
val(p1). val(p2). val(p3). val(p4). val(o1). val(o2).
val(u1). val(u2). val(u3). val(u4). val(t1). val(t2). val(t3). val(t4).
val(a1). val(any4). anyval(4, any4). val(null).

2

Differently from other proposals, the approach based on ASP permits a correct han-
dling of information incompleteness and provides the user with all possible legal global
databases.

Let us conclude our working example by illustrating how the inference engine of
SMODELS handles queries in presence of incomplete information.

Example 6.Below we report the answer sets produced by SMODELS for the above
source instance. Notice that in such data source there exists an object occurring
in the relationships4 (namely, a1) which corresponds tot2. Since in the global
schema the participation ofStudent to the relationshipEnrolled is mandatory, the
mapping should identify an object inUniversity related tot2 throughEnrolled. This
knowledge cannot be obtained from the source schema: the only known fact is that
there exist four universities in the universe of discourse. (This is asserted by the facts
isValue1(5,u1), isValue1(5,u2), isValue1(5,u3), andisValue1(5,u4).) Consequently, any
answer set wheret2 is enrolled in one of these universities must be considered as legal.
SMODELS produces four different answer sets. We list below one of them, together
with the differences between it and the others (underlined facts):
Answer: 1. Stable Model: mandatory1(3,2) enrolled(t1,u1) enrolled(t2,u3)

university(u4) university(u1) university(u2) university(u3) student(t2) student(t1)
member(p1,o1) member(p2,u1) member(t1,u1) member(t2,u3)
organization(u4) organization(o1) organization(u1) organization(u2) organization(u3)
person(t2) person(p1) person(p2) person(t1)

Answer: 2. Stable Model: . . . enrolled(t2,u4) . . . member(t2,u4) . . .
Answer: 3. Stable Model: . . . enrolled(t2,u2) . . . member(t2,u2) . . .
Answer: 4. Stable Model: . . . enrolled(t2,u1) . . . member(t2,u1) . . . 2

5 Remarks on the Approach

It is not hard to believe that the rules that define the global schema in terms of the
helper model can be generated automatically, given the E-R schema or any other semi-
formal sufficiently expressive representation. The rules that state the correspondence

between the global schema and the source schema through the helper model can also
be generated automatically. In real applications, access to the source database will be
performed by a suitable wrapper interface.

Then, the core of our approach is the helper model, which, once equipped with
suitable interfaces, allows heterogeneity, and, as we have seen, is able to cope with
incompleteness. In our approach, the definition of mapping satisfaction must be refor-
mulated as follows, where letTASP be the helper model we have defined before, and
PM be the ASP program, suitably customized to the mapping at hand.

Definition 4. LetM be a mapping between the modelsT1 and T2, and assume that
M is based upon the helper modelT3 = TASP . Let I be an interpretation of the
corresponding ASP programPM. Then,I satisfies the mappingM if and only ifI is
an answer set ofPM.

For proving query answerability we have to prove the correctness of our inference
engine, and this is for the time being just a claim. The reader however is invited to check
this claim by running the above ASP program, on the proposed example as well as on
others.

References

[1] Web locations of the best known ASP solvers.
CCALC: http://www.cs.utexas.edu/users/mcain/cc
Cmodels:http://www.cs.utexas.edu/users/tag/cmodels.html
DeReS:http://www.cs.engr.uky.edu/˜ lpnmr/DeReS.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe:http://www.cs.uni-potsdam.de/ linke/nomore/
SMODELS:http://www.tcs.hut.fi/Software/smodels/

[2] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini.Accessing data integration sys-
tems through conceptual schemas. In: Proc. of the 10th Italian Conf. on Database Systems
(SEBD’02), 2002.

[3] M. Gelfond and V. Lifschitz.The stable model semantics for logic programming. Proc. of
5th ILPS conference : 1070–1080, 1988.

[4] M. Gelfond and V. Lifschitz.Classical negation in logic programs and disjunctive databases.
New Generation Computing: 365–387, 1991.

[5] V. Lifschitz. Answer Set Planning.In: D. De Schreye (ed.) Proc. of the 1999 International
Conference on Logic Programming ICLP’99 (invited talk), The MIT Press, pp. 23–37, 1999.

[6] J. Madhavan, P. A. Bernstein, P. Domingos, and A.Y. Halevy.Representing and Reasoning
About Mappings between Domain Models. In: Proc. 18th National Conference on Artificial
Intelligence (AAAI 2002), Edmonton, Canada.

[7] W. Marek and M. Truszczýnski. Stable models and an alternative logic program-
ming paradigm,The Logic Programming Paradigm: a 25-Year Perspective, Springer-Verlag,
pp. 375–398, 1999.

