
A N ew Logic Architecture for Intelligent Agents

Gabriela ~erban

Department of Computer Science
"Babelj-Bolyai" University

1, M. Kogalniceanu Street, Cluj-Napoca, Romania
tel: +40.264.1105325, fax: +40.264. 191.960

gabis~cs.ubbcluj.ro

http: //ww. cs .ll!bbcluj .ro/Ngabi s

Abstrac t. It is well-known that one of the concrete architectures for
intelligent agents is the logic one. In our opinion, the symbolic repre­
sentations for the intelligent behavior arc very important, and the logic
approach is elegant and bas a pure semantic. The aim of this paper is to
present a new logic architecture for inteUigent agents (LASG - a Logic
Architecture based on Stacks of Goals) (lj. This architecture combines
the traditional logic architecture with a planning architecture (8] . T he
advantages of the proposed architecture are shown in the paper. As a case
study we illui'Jtrato the use of the LASG algorithm on a maze searching
problem.

Keywords: intelligent agents, logic, declarative programming.

1 Introduction

The logic approach i:s a topic of Symbolic Artificial Intelligence and has its

own importance in the field of intelligent agents, even if it is well-known the
controversy between lhe traditional approach and the intelligent calculus in the

field of Artificial Intelligence.
On the other band, knowledge representation is one of the most important

subareas of Artificial Int1~ 1ligence and logic programming has a. major application

in this field [7] .
Moreover, the only intelligence requirement we generally make for the agent:>

is that [6j they can make an acceptable decision about what action to perform

next in their environment, in time for this decision to be useful. Other require­
ments for intelligence will be determined by the domain in which the agent is
applied: not all agents will need to be capable of learning, for example.

In such situat ions, a logic architecture is very appropriate, and offers, in our
opinion, a simple and elegant representation for the agent'~> environment and

desired behavior.
According to the tradit ional approach [6J, the syrnboli{: representations aro

logical fomtnlae, and t he :;yntactic manipulation corresponds to logical deduction,

or t heorem proving.

160

In such a logic approach, the agent could be considered as a theorem prover

{if t/J is a theory that. ex-plains how an intelligent agent should behave, the system

might generate a sequence of steps - ~tions - that leads to t/J - in fact a proof

for 1/J).
However , some disadvantages of the logic approach are:

- the computational complexity of a theorem proving process raises the prob­

lem if the agents represented thls way can really operate in time-restricted

environments;

- the process of decision making in such logic architectures is based on the

assumption t hat the environment docs not change its structure, essentially,

during the decision process (a decision that is correct at. the beginning of the

process, will be correct at the end if it, too);

- the problem of representation and reasoning in comple..'C and dynamic envi­

ronmcnLs is, an open problem. as well

It is known that logic programming theories of reasoning about ~Lions and

planning implementations are interconnected [5J.

On the other hand Brogi shows in (4J that the complex planning strategies

find natural logic-based formulations and efficient implementations in the frame­

work of deductive database languages.

2 A Logic Architecture B ased on Stacks of Goals (LASG)

In this section we propose an approach that shows how to use a STRIPS-like

planning strategy to describe a logic architecture for intelligent agents.

We will consider, in the following. the case of an agent which goal is to solve

a given problem (pass from an initial to a final state), based on a set of operators

(rules) that could be applied on a given moment (9j.

In a LASG architecture, we will use the declarative representation of the

knowledge.
Let L be a set of sentences from the first-order logic, and D = P (L) the set

of £-databases (the set of sets of L-formttlae). In the model that we propose, the

internal state of the agent will be given by an element from D {for simplicity. we

will consider it as a formula in a conj unctive normal form).

2 .1 Case Study: Searching a m aze

In t.his section we will consider the following problem: we have a maze that has a

rectangular form; in some positions there are oootacles; a robotic agent starts in

a given state (the initial state) and it tries to reach a final (goal) state, avoiding

t he obstacles; in a certain position on the maze the agent could move in four

directions: north, south, east, west (there are four possible actions). We will

assume that the dimen:;ions of the maze are known: M is the number of rows,

N is the number of columns.

161

In the example that we choose, the environment (the maze) is not dynamic
(it suffers no modifications after the agent's acLions). However, this assumption
is not essential, it has no significant influence on t he agent's behavior.

We consider that:

- a position on the maze is identified by a pair (X, Y) (the line, respectively
the column) ;

- the left up corner of the maze is marked as t he position (1, 1) .

The four actions that the robotic agent could execute arc the following:

NORTH(X, Y) -from the position (X, Y) the robot moves in the north
direction. The positions (X, Y) and (X-1 , Y) must be into the maze and must
not contain obstacles.

EAST(X, Y) - from the position (X, Y) the robot moves in the east direc­
tion. The positions (X, Y) and (X, Y+l) must be into the maze and must not
contain obstacles.

SOUTH(X, Y) -from the position (X, Y) t he robot moves in the south
direction. The positions (X, Y) and (X+l , Y) must be into the maze and must
not contain obstacles.

WEST(X, Y) - from the position (X. Y) the robot moves in t he west

direction. The positions (X, Y) and (X, Y-1) must be into the maze and must
not contain obstacles.

In order to specify both t he conditions in which t he operations hold and the
results of executing Lhe operations. we will usc the following predicates:

FREE(X, Y) - Lhe position (X. Y) is free (docs not contain an obstacle).
IN{X, Y) - the robotic agent is in the position (X, Y).
VALID(X, Y, M, N) - the position (X, Y) is valid in Lhe given maze (is

into the maze).
POSSIBLE(X, Y , M , N) - the position (X, Y) is free and valid.

We notice that:

POSSIBLE(X, Y,M,N) <=> FREE(X, Y) andV ALID(X, Y,M, N) (1)

In such a logic representation, there are valid some logic declarat ions. For
example,

noLFREE(X,Y)andVALID(X, Y, M , N) - notiN(X,Y) (2)

notFREE(X , Y) or noL V ALID(X ,Y,lvl,N)-+ not iN(X, Y) (3)

As io a planning sy!>'tem , in a LASG architecture musl be realized the fol­
lowing functions:

1. how to detect lhe best rule to apply, based on the best (possible heuri!>-tic)
information available;

162

2. how to apply the chosen rule in order to compute the new problem's state;
3. how to detect if a solution was found;
4. how to detect if the system was blocked, in order to abandon the blocked

paths and the system's effort to be directed in most interesting directions.

2.2 How to select the rules

Tho most used technique for choosing the appropriate rules is t.o determine a set
of di!Icrcnccs bet.ween the desired final state and the current state, and then to
identify che relevant rules for reducing the differences. If more rules arc identified,
a variety of heuristic information could be exploited in order to chose t.he rule
to be applied. This technique is based on the means-end analysis.

2.3 H ow to apply the rules

A possibility to apply the rules is to describe for each possible action the changes
that it brings to the state's description. Moreover, some declarations arc needed,
in order to state that the rest of the description remains the same. A solut.ion
for this problem could be to describe a state as a set of predicates representing
the facts that arc valid in the given state. Eacll state is explicitly represented as
an argument. of the predicates. For example, assume that the current state S is
described by

POSSI BLE(X. Y, M , N , S) and! N(X, Y, S) and

POSSIBLE(X -l ,Y,M,N,S)

and the rule that describes the operator N ORTH(X, Y) will be

(4)

POSSIBLE(X, Y, M , N , S) and JN(X , Y, S) and (5)

POSSIBLE(X - l , Y , M , N , S) ~ JN (X -1, Y,DO(NORTH(X ,Y) ,S))

In the above equation DO is a function which specifics the state that results
after applying a given action in a given state.

For assuring the correctness of the deduction mechanisms, it will be necessary
a set of rules to describe those components of the states thaL are noL a[ected by
the operators (the so named frame axiom.~) . The advantage of this approach is
LhaL a unique mechanism, the resolution, could realize all the operations needed
to describe the states. However, the disadvantage is the big number of a.xioms,
if the states' descriptions arc complex.

In the architecture thaL we propose in this section, Lhe number of explicit
frame axioms that should h1~ used is not so big.

Eacb operator will be described by a list of new predicates that arc made
t rue by the operator and a list of old predicates that arc made false by the
operator. The t.wo list.s are named ADD, respectively DELETE. Moreover, for
each operator a third li::.-t is specific, PRECONDITIOI\'", which contains all the
predicates that must be true in order to apply the operator. The frame rudoms

163

arc implicitly specified in LASG. Each predicate not included in the ADD or
DELETE list.s of an operator is not affected by that operator.

The LASG operaton; t hat correspond to the operations presented above are
shown in Figure 1. For simplicity, we numbered the four moving possibilities of
the robotic agent from a given position (X, Y) as follows: 1- North, 2 - Ea::.-t, 3
-South, 4 - West. We also consider two vectors dx = (-1, 0, 1, 0) and dy =
{0, 1, 0, -1) which gives the moves relative on line and column corresponding
to the four ac~ious. Thus, the operator corresponding to tho k-Lh move from the
position (X, Y) could be described as below:

O(X, Y, M, N, K)
P : POSSIBLE(X, Y, M, N) and IN(X, Y) and POSSIDLE(X+dx[k], Y+ dy[k], M, N)
A: IN(X+dx(kj, Y+ dy[k])
D: IN{X, Y)

Fig. 1. The operators' description

The application of an operator 0 on a state S (given as a logic formula cb)
means that the predicates from the ADD list of the operator should be added
in ¢. On the other hand, Lhe return to the state before applying Lhe operator
0 (t.he backt.raclcing) means that the predicates from t.he DELETE li~ of the
operator should be deleted from ¢.

3 The LASG algorithm

The idea of the algorithm is to usc a stack of goals (a unique stack that contains
both goal!> and operators proposed for solving those goals). The problem solver
is also based on a database Lhat de~>cribes the current situation (state) and o set
of operators described by the PRECONDITION, ADD and DELETE list~;. For
illustration, we will apply this method on the example shown in Figure 3 (the
nwnber of row:; M is t1 and the number of columns N is 3) .

AL lhe beginning of the problem solving process, Lhe stack of goals contains
IN(l, 3)

We have to find an operator which makes true the predicate from the top of
the stack (in other words, the predicate IN(l, 3) must appear in the ADD list
of the operator). We find (by variables' bounding) two possibilities: the operator
0 (1, 2, 4, 3, 3) and 0(2, 3, 4, 3, 1). We separat-e the initial stack into two
stacks, we place in the top of t he corresponding stack (instead of IN (1, 3)) the
opcn1tor that was found and the predicates from it's PRECOI\TDITION list.

IN(2, 3) ll\{1 , 2)
FREE{2, 3) FREE{l, 2)
VALID(2, 3, 4, 3) VALID(l , 2, 4, 3)

163

arc implicitly specified rn LASG. Each predicate not included in the ADD or
DELETE lists of an operator is not affected by that operator.

The LASG operators that correspond to the operations presented above arc
shown in Figure 1. For simplicity, we numbered the four moving possibilities of
the robot.ic agent from a given poslt.ion (X , Y) as follows: 1- North, 2 - Bast, 3
- South, t1 - We~:~t. We also consider two vectors dx = (-1, 0, 1, 0) and dy =
(0, 1, 0, -1) which gives the moves relative on line and column corre::.-pondlng
to the four actions. Thus, the operator corresponding to the k-th move from t he
posit,ion (X, Y) could be described as below:

O(X, Y, M, N, K)
P : POSSlOLE(X, Y, M, N) and TN(X, Y) and POSSIBLE(X+dx[k] , Y+ dy[k], M, N)
A: IN(X+dx[kj, Y+ dy[k])
D: IN{X, Y)

Fig. 1. The operators' description

The application of an operator 0 on a state S (given as a logic formula ¢)
means that the predil;ates from the ADD list of t he operator should be added
in ¢>. On the other hand, the return to the state before applying the operator
0 (the backtracking) means that the predicates from t he DELGTE list of the
operator should be deleted from rp .

3 The LASG algorithm

The idea of the algorithm is louse a stack of goals (a unique stack that contains
both goals and operators proposed for solving those goals). T he problem ~:~olver
is a lso bused on a database that describes the current situation (state) and o ~et
of operators described by the PRECONDITION, ADD and DELETE lists. For
illustration, we will apply this method on the example shown in Figure 3 (the
mHnb~lr of rows M is 4 and th(!.uumber of columns N is 3).

At. tho beginning of the problem solving process, the stack of goals contains
IN(l , 3)

We have lo find an operator which makes true the predicate from t he top of
the s1.ack (in other words, lhe predicate IN(l , 3) must appear in lhe ADD list
of the operator). We find (by v-dl"iables' bounding) two possibilities: the operator
0 {1, 2, 4, 3, 3) and 0 {2, 3, 4, 3, 1). We separate the initial stack into two
stacks, we place in the top of the corresponding stack (instead of IN(l, 3)) tho
operator that was found and the predicate; from it 's PRECONDmON list.

lli(2, 3) lli{l, 2)
FREE(2. 3) FREE(!, 2)
VALID(2. 3, 4. 3) VALID(!, 2, 4. 3)

164

0 (2, 3, 1, 4, 3)
(1)

0(1, 2, 3, 4, 3)
(2)

For each stack, we repeaL the operationH described above with thtl predicate from the top of the stack. At a given moment, there arc four possibilitiCH:

- iu the top of the stack is an operator; in this case we remove jt from the top, and wo retain the operator as part. of the problem's solution; - the predicate from Lbe top of Lhc slack ill true; in this ca:;c we remove it from the top:
- tl1e predicate from the t,op of the Btack is falBc; in this case we have to find operators that make the predicate true; we ramify the stack; we add the operators (with their preconditions) in the stack;
- the predicate from the top of the stack can not be satisfied, which means that the system was blocked; in this case we have to abandon the current path, because it will not lead to a solution.

The opcratjon ill repeated unLil the stac:k became empty (a solution of the problem was found), or unW all the possibilitiel! were blocked {in this case the problem solving fails).
U we continue to apply the algorithm on our example, two solutions will be reported:

1. 0{4, 1, 4, 3, 1) 1. 0(4, 1, 4, 3, 1)
2. 0(3, 1, 4, 3, 1) 2. 0(3, 1, 4, 3, 1)
3. 0{2, 1, 4, 3, 2) 3. 0 (2, 1, 4, 3, 2)
4. 0(2, 2, 4, 3, 2) 4. 0(2, 2, 4, 3, 1)
5. 0 (2, 3, 4, 3, 1) 5. 0 (1, 2, 4, 3, 2) In fact, the algorithm consists in a process of backward reasoning (we starts from the final stale), method known io the literature as a. goal directed reasoning.

We as!lume that are given:

- Sf {the initial state for the agent);
- SF(the final state that the agent tries to reach) - there could be a set of final states;
- a sel of operators 0 = {01, 0 2 , .. · Od that arc available to the problem solving agent.. For each operator 0; the agent knows the three lists: PRE­CONDITION, ADD and DELETE.

Tbe agent 's goal is to reach tho final :.tate SF, ~;tarting from the injtial state Sf, keeping ahlstory H of the visited states (H = {S1 , S2, · · · Sm}, where S1 = SI and $ 1 =SF), or of the applied operators (H = {O,,t,0.,2, · · · Oi,m- d). In the case that the problem has no solution, H will be empty.
Tbe algorithm which determines a solution of the problem (if exist.s a solu­t ion) is described in Figure 2.
The non-determinism of t he step 4 from the above described algorithm has to bo implemented as a kind of search procedure (a limited dcpth-fin;t search).

165

1. - we create a stack of goals S (the solut ion stack) LhaL initially contains the
predicates that should be satisfied in the final state SF. In other words,
if the finn.! st.at.e could be written as conjunction of logic sentences SF =
{tPl and</>2 and ··· and<i>n}, then S = {¢1. I/J2. · · · 0n}i

- SC (the current state):= SI (the initial stat.c) ;
- H:=empty;

2. Ir S is empty and the final state SF was reached, then the algorithm stops and
the final solution is reported; else go to step 3 ;

3. 3.1 I f the top of the stack contains an operator O,, on add the operator in fl,
on remove t.he t.op of stack, on recalculate the current state SC at which on add
the predicates from the A list of the operator 0,; go to step 2; e lse go to step
3.2;

3.2 On choose t.he predicate from the top of the stack (<i>J). If </>1 is satisfied in
SC, we remove it from the top of the stack; go to step 2; else go to step 4;

4. We look for the operator Oi (the operators, if are several) that makes </>1 true. If
there are several operators 0,,1, Oi,2. · · · Oi,s, on ramify the solution {on obtain s
s tacks)

for j= l ,s (for each of the s stacks)
- we add on the top of the stack S; the predicates from the PRECONDI­

TIOX list. of t.he operator 0;,3 ; go to step 3.

Fig. 2. The algorithm to determine a solution in a LASG architecture

4 Comparison b etween the LASG architecture and the
traditional logic architecture

Tlle Logic Architecture based on a stack of goals improves the traditional logic
architecture for intelligent agenl.s in the following directions:

- comparatively to the traditional logic approach, where the number of the
frame axioms that should be saved in order to make a correct inference is
large, the LASC architecture reduces this number. In other words, Lhe space
complexity is reduced;
because of a limited Depth First search. the time complexity is reduced, too;

- lhe representation is very simple and elegant..

5 Experiment

Because the above described architecture is based on logic and because the
algorithm described in Figure 2 needs backtracking for finding aU solutions, the
implementation was made in Visual Prolog. It is well-known that the declarative
programming languages (as Prolog) have a built-in control mechanism which
u.Uows finding all the solutions of a problem.

166

We have to say that the stack (stacks) of goals that we have t.O create for
applying lhe algorithm {Figure 2) arc retained implicitly by the control strategy
of Prolog (a mech!Ulism which allows backtracking).

For iUust.rating the algorithm we consider the sim ple environment shown in
Figure 3.

F ig. 3. The agent's environment

The positions filled with black on the maze contains obstacles.
We implement.cd a Prolog program, which basic non-deterministic predicate

is path(Xi, Yi, Xf, Yf, M, N , L) , having the flux model (i, i , i, i, i, i, o) ,
and the following signification for the arguments:

- Xi, Yi- the coordinates (line and column) of t he initial position (the starting
position for the agent);

- Xf, Yf - the coordinates (line and column) of the final position (the position
that !.he agcnL tries to reach) ;

- M , N - number of lines and respectively columns of the maze;
- L - the list of positions visited by the agent. for reaching SF starting from

SI (if the problem has no solution, the list will be empty).

For solving t he problem, we considered an LASG architecture and we applied
Lbe algorithm described in Figure 2.

The goal has t he form
goal: path(4, 1, ~. 3 , 3, 3, L)

and the i>Olut.ions are two:
1=[(4, l j. (3, l j, (2, l j, (2, 2J, [2, 3], (1, 3IJ
1=[(4, lJ. [3, l J, (2. 1], [2, 2], [1, 21 , [1, 3JI

167

\:Vc mention that we consider different rectij.!lgular environments and t he
results arc good.

6 Conclusions and future work

In a logic based architecture, the intelligent behavior is generated in the system
by a symbolic rcpn:senta.tion of the environment and of the behavior and by a

symbolic manipulation of this represcntatjon.
vVe intend to make a better evaluation for the LASG architecture and to com­

pare our approach with other work:>, such as, the traditional planning straLegics
(STRIPS ba~ed), event. and situation calculus, and ~he dynamjc logic program­
ming approach [3].

Further work could be done in lhe following direction::;:

- in which way we could use some heuristic informat ion in order to reduce the
computational complexity of the deduction process;

- in which way we can combine the traditional logic architecture with olhcr
planning architectures (TWEAK, hierarchical planning architecture~ [8));

- in wich way the system is able to deal with dynamic environments.

References

1. Serban, G.: Development methods for lntclligent Systems. Ph.D. Thesis. "Babes­
Bolyai" University of Cluj-Napoca, Romania (2003)

2. Weiss, G.: Multiagcnt systems - A Modern Approach t.o Distributed Artificial In­
telligence. The MIT Press, Cambridge, Massachusetts, London (1999)

3. Alferes, J.J ., Leite, J.A, Pereira, L.M., P rzymusinska, R. , Przymusinski, T.C: Dy­
namic Logic Programming {1998)

4. Brogi. A., Subrahmanian, V.S and Zaniolo, C.: The Logic of Totally and Partially
Ordered Plans: A Deductive Databa:>e Approach. Annals of Mathematics and Ar­
tificial Intelligence, 19(1,2) (l9fl7) 27-58

5. Baral, C.: Relating Logic Programming Theories of Action~ and ParLial Order Plan­
ning. Annals of Math and AI, voL 21 (1997) Nos 2--4

6. Wooldridge, M.: Agcnt-Based__8oftware Engineering. Mitsubishi Electric Digital Li­
brary Group, London (1997)

7. Baral, C. and Gel fond , M.: Logic programming and knowledge representation. Jour-
nal of Logic Programming 19,20 (1994) 73- 148

8. Rich, E., Knight. K.: Artificial Intelligence. Me Graw Hill , New York {1991)
9. Winston, P.: Artificial Intelligence. Addison Wesley, Reading, MA {1984) 2nd ed
10. Reiter, R:On closed world databases. ln Gallaire, Fl. and :\1inker, J. (eds.): Logic

and DataBases, P lenum Press, New York, {1978) 119-140

