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Abstrac t. It is well-known that one of the concrete architectures for 
intelligent agents is the logic one. In our opinion, the symbolic repre­
sentations for the intelligent behavior arc very important, and the logic 
approach is elegant and bas a pure semantic. The aim of this paper is to 
present a new logic architecture for inteUigent agents (LASG - a Logic 
Architecture based on Stacks of Goals) (lj. This architecture combines 
the traditional logic architecture with a planning architecture (8] . T he 
advantages of the proposed architecture are shown in the paper. As a case 
study we illui'Jtrato the use of the LASG algorithm on a maze searching 
problem. 
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1 Introduction 

The logic approach i:s a topic of Symbolic Artificial Intelligence and has its 

own importance in the field of intelligent agents, even if it is well-known the 
controversy between lhe traditional approach and the intelligent calculus in the 

field of Artificial Intelligence. 
On the other band, knowledge representation is one of the most important 

subareas of Artificial Int1~ 1ligence and logic programming has a. major application 

in this field [7] . 
Moreover, the only intelligence requirement we generally make for the agent:> 

is that [6j they can make an acceptable decision about what action to perform 

next in their environment, in time for this decision to be useful. Other require­
ments for intelligence will be determined by the domain in which the agent is 
applied: not all agents will need to be capable of learning, for example. 

In such situat ions, a logic architecture is very appropriate, and offers, in our 
opinion, a simple and elegant representation for the agent'~> environment and 

desired behavior. 
According to the tradit ional approach [6J, the syrnboli{: representations aro 

logical fomtnlae, and t he :;yntactic manipulation corresponds to logical deduction, 

or t heorem proving. 
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In such a logic approach, the agent could be considered as a theorem prover 

{if t/J is a theory that. ex-plains how an intelligent agent should behave, the system 

might generate a sequence of steps - ~tions - that leads to t/J - in fact a proof 

for 1/J). 
However , some disadvantages of the logic approach are: 

- the computational complexity of a theorem proving process raises the prob­

lem if the agents represented thls way can really operate in time-restricted 

environments; 

- the process of decision making in such logic architectures is based on the 

assumption t hat the environment docs not change its structure, essentially, 

during the decision process (a decision that is correct at. the beginning of the 

process, will be correct at the end if it, too); 

- the problem of representation and reasoning in comple..'C and dynamic envi­

ronmcnLs is, an open problem. as well 

It is known that logic programming theories of reasoning about ~Lions and 

planning implementations are interconnected [5J. 

On the other hand Brogi shows in (4J that the complex planning strategies 

find natural logic-based formulations and efficient implementations in the frame­

work of deductive database languages. 

2 A Logic Architecture B ased on Stacks of Goals (LASG) 

In this section we propose an approach that shows how to use a STRIPS-like 

planning strategy to describe a logic architecture for intelligent agents. 

We will consider, in the following. the case of an agent which goal is to solve 

a given problem (pass from an initial to a final state), based on a set of operators 

(rules) that could be applied on a given moment (9j. 

In a LASG architecture, we will use the declarative representation of the 

knowledge. 
Let L be a set of sentences from the first-order logic, and D = P (L) the set 

of £-databases (the set of sets of L-formttlae). In the model that we propose, the 

internal state of the agent will be given by an element from D {for simplicity. we 

will consider it as a formula in a conj unctive normal form). 

2 .1 Case Study: Searching a m aze 

In t.his section we will consider the following problem: we have a maze that has a 

rectangular form; in some positions there are oootacles; a robotic agent starts in 

a given state (the initial state) and it tries to reach a final (goal) state, avoiding 

t he obstacles; in a certain position on the maze the agent could move in four 

directions: north, south, east, west (there are four possible actions). We will 

assume that the dimen:;ions of the maze are known: M is the number of rows, 

N is the number of columns. 
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In the example that we choose, the environment (the maze) is not dynamic 
(it suffers no modifications after the agent's acLions). However, this assumption 
is not essential, it has no significant influence on t he agent's behavior. 

We consider that: 

- a position on the maze is identified by a pair (X, Y) (the line, respectively 
the column) ; 

- the left up corner of the maze is marked as t he position (1, 1) . 

The four actions that the robotic agent could execute arc the following: 

NORTH(X, Y) -from the position (X, Y) the robot moves in the north 
direction. The positions (X, Y) and (X-1 , Y ) must be into the maze and must 
not contain obstacles. 

EAST(X, Y) - from the position (X, Y) the robot moves in the east direc­
tion. The positions (X, Y) and (X, Y+l ) must be into the maze and must not 
contain obstacles. 

SOUTH(X, Y ) -from the position (X, Y) t he robot moves in the south 
direction. The positions (X, Y) and (X+l , Y) must be into the maze and must 
not contain obstacles. 

WEST(X, Y) - from the position (X. Y) the robot moves in t he west 

direction. The positions (X, Y) and (X, Y-1) must be into the maze and must 
not contain obstacles. 

In order to specify both t he conditions in which t he operations hold and the 
results of executing Lhe operations. we will usc the following predicates: 

FREE(X, Y) - Lhe position (X. Y) is free (docs not contain an obstacle). 
IN{X, Y) - the robotic agent is in the position (X, Y). 
VALID(X, Y, M, N) - the position (X, Y) is valid in Lhe given maze (is 

into the maze). 
POSSIBLE(X, Y , M , N) - the position (X, Y) is free and valid. 

We notice that: 

POSSIBLE(X, Y,M,N) <=> FREE(X, Y) andV ALID(X, Y,M, N) (1) 

In such a logic representation, there are valid some logic declarat ions. For 
example, 

noLFREE(X,Y)andVALID(X, Y, M , N) - notiN(X,Y) (2) 

notFREE(X , Y ) or noL V ALID(X ,Y,lvl,N)-+ not iN(X, Y) (3) 

As io a planning sy!>'tem , in a LASG architecture musl be realized the fol­
lowing functions: 

1. how to detect lhe best rule to apply, based on the best (possible heuri!>-tic) 
information available; 
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2. how to apply the chosen rule in order to compute the new problem's state; 
3. how to detect if a solution was found; 
4. how to detect if the system was blocked, in order to abandon the blocked 

paths and the system's effort to be directed in most interesting directions. 

2.2 How to select the rules 

Tho most used technique for choosing the appropriate rules is t.o determine a set 
of di!Icrcnccs bet.ween the desired final state and the current state, and then to 
identify che relevant rules for reducing the differences. If more rules arc identified, 
a variety of heuristic information could be exploited in order to chose t.he rule 
to be applied. This technique is based on the means-end analysis. 

2.3 H ow to apply the rules 

A possibility to apply the rules is to describe for each possible action the changes 
that it brings to the state's description. Moreover, some declarations arc needed, 
in order to state that the rest of the description remains the same. A solut.ion 
for this problem could be to describe a state as a set of predicates representing 
the facts that arc valid in the given state. Eacll state is explicitly represented as 
an argument. of the predicates. For example, assume that the current state S is 
described by 

POSSI BLE(X. Y, M , N , S) and! N(X, Y, S) and 

POSSIBLE(X -l ,Y,M,N,S) 

and the rule that describes the operator N ORTH(X, Y ) will be 

(4) 

POSSIBLE(X, Y, M , N , S) and JN(X , Y, S ) and (5) 

POSSIBLE(X - l , Y , M , N , S) ~ JN (X -1, Y,DO(NORTH(X ,Y) ,S)) 

In the above equation DO is a function which specifics the state that results 
after applying a given action in a given state. 

For assuring the correctness of the deduction mechanisms, it will be necessary 
a set of rules to describe those components of the states thaL are noL a[ ected by 
the operators (the so named frame axiom.~) . The advantage of this approach is 
LhaL a unique mechanism, the resolution, could realize all the operations needed 
to describe the states. However, the disadvantage is the big number of a.xioms, 
if the states' descriptions arc complex. 

In the architecture thaL we propose in this section, Lhe number of explicit 
frame axioms that should h1~ used is not so big. 

Eacb operator will be described by a list of new predicates that arc made 
t rue by the operator and a list of old predicates that arc made false by the 
operator. The t.wo list.s are named ADD, respectively DELETE. Moreover, for 
each operator a third li::.-t is specific, PRECONDITIOI\'", which contains all the 
predicates that must be true in order to apply the operator. The frame rudoms 
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arc implicitly specified in LASG. Each predicate not included in the ADD or 
DELETE list.s of an operator is not affected by that operator. 

The LASG operaton; t hat correspond to the operations presented above are 
shown in Figure 1. For simplicity, we numbered the four moving possibilities of 
the robotic agent from a given position (X, Y) as follows: 1- North, 2 - Ea::.-t, 3 
-South, 4 - West. We also consider two vectors dx = (-1, 0, 1, 0) and dy = 
{0, 1, 0, -1) which gives the moves relative on line and column corresponding 
to the four ac~ious. Thus, the operator corresponding to tho k-Lh move from the 
position (X, Y) could be described as below: 

O(X, Y, M, N, K) 
P : POSSIBLE(X, Y, M, N) and IN(X, Y) and POSSIDLE(X+dx[k], Y+ dy[k], M, N) 
A: IN(X+dx(kj, Y+ dy[k]) 
D: IN{X, Y) 

Fig. 1. The operators' description 

The application of an operator 0 on a state S (given as a logic formula cb) 
means that the predicates from the ADD list of the operator should be added 
in ¢. On the other hand, Lhe return to the state before applying Lhe operator 
0 (t.he backt.raclcing) means that the predicates from t.he DELETE li~ of the 
operator should be deleted from ¢. 

3 The LASG algorithm 

The idea of the algorithm is to usc a stack of goals (a unique stack that contains 
both goal!> and operators proposed for solving those goals). The problem solver 
is also based on a database Lhat de~>cribes the current situation (state) and o set 
of operators described by the PRECONDITION, ADD and DELETE list~;. For 
illustration, we will apply this method on the example shown in Figure 3 (the 
nwnber of row:; M is t1 and the number of columns N is 3) . 

AL lhe beginning of the problem solving process, Lhe stack of goals contains 
IN(l, 3) 

We have to find an operator which makes true the predicate from the top of 
the stack (in other words, the predicate IN(l, 3) must appear in the ADD list 
of the operator). We find (by variables' bounding) two possibilities: the operator 
0 (1, 2, 4, 3, 3) and 0(2, 3, 4, 3, 1). We separat-e the initial stack into two 
stacks, we place in the top of t he corresponding stack (instead of IN (1, 3)) the 
opcn1tor that was found and the predicates from it's PRECOI\TDITION list. 

IN(2, 3) ll\{1 , 2) 
FREE{2, 3) FREE{l, 2) 
VALID(2, 3, 4, 3) VALID(l , 2, 4, 3) 
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arc implicitly specified rn LASG. Each predicate not included in the ADD or 
DELETE lists of an operator is not affected by that operator. 

The LASG operators that correspond to the operations presented above arc 
shown in Figure 1. For simplicity, we numbered the four moving possibilities of 
the robot.ic agent from a given poslt.ion (X , Y) as follows: 1- North, 2 - Bast, 3 
- South, t1 - We~:~t. We also consider two vectors dx = (-1, 0, 1, 0) and dy = 
(0, 1, 0, -1) which gives the moves relative on line and column corre::.-pondlng 
to the four actions. Thus, the operator corresponding to the k-th move from t he 
posit,ion (X, Y) could be described as below: 

O(X, Y, M, N, K) 
P : POSSlOLE(X, Y, M, N) and TN(X, Y) and POSSIBLE(X+dx[k] , Y+ dy[k], M, N) 
A: IN(X+dx[kj, Y+ dy[k]) 
D: IN{X, Y) 

Fig. 1. The operators' description 

The application of an operator 0 on a state S (given as a logic formula ¢) 
means that the predil;ates from the ADD list of t he operator should be added 
in ¢>. On the other hand, the return to the state before applying the operator 
0 (the backtracking) means that the predicates from t he DELGTE list of the 
operator should be deleted from rp . 

3 The LASG algorithm 

The idea of the algorithm is louse a stack of goals (a unique stack that contains 
both goals and operators proposed for solving those goals). T he problem ~:~olver 
is a lso bused on a database that describes the current situation (state) and o ~et 
of operators described by the PRECONDITION, ADD and DELETE lists. For 
illustration, we will apply this method on the example shown in Figure 3 (the 
mHnb~lr of rows M is 4 and th(!.uumber of columns N is 3). 

At. tho beginning of the problem solving process, the stack of goals contains 
IN(l , 3) 

We have lo find an operator which makes true the predicate from t he top of 
the s1.ack (in other words, lhe predicate IN(l , 3) must appear in lhe ADD list 
of the operator). We find (by v-dl"iables' bounding) two possibilities: the operator 
0 {1, 2, 4, 3, 3) and 0 {2, 3, 4, 3, 1). We separate the initial stack into two 
stacks, we place in the top of the corresponding stack (instead of IN(l, 3)) tho 
operator that was found and the predicate; from it 's PRECONDmON list. 

lli(2, 3) lli{l, 2) 
FREE(2. 3) FREE(!, 2) 
VALID(2. 3, 4. 3) VALID(!, 2, 4. 3) 
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0 (2, 3, 1, 4, 3) 
(1) 

0(1, 2, 3, 4, 3) 
(2) 

For each stack, we repeaL the operationH described above with thtl predicate from the top of the stack. At a given moment, there arc four possibilitiCH: 

- iu the top of the stack is an operator; in this case we remove jt from the top, and wo retain the operator as part. of the problem's solution; - the predicate from Lbe top of Lhc slack ill true; in this ca:;c we remove it from the top: 
- tl1e predicate from the t,op of the Btack is falBc; in this case we have to find operators that make the predicate true; we ramify the stack; we add the operators (with their preconditions) in the stack; 
- the predicate from the top of the stack can not be satisfied, which means that the system was blocked; in this case we have to abandon the current path, because it will not lead to a solution. 

The opcratjon ill repeated unLil the stac:k became empty (a solution of the problem was found), or unW all the possibilitiel! were blocked {in this case the problem solving fails). 
U we continue to apply the algorithm on our example, two solutions will be reported: 

1. 0{4, 1, 4, 3, 1) 1. 0(4, 1, 4, 3, 1) 
2. 0(3, 1, 4, 3, 1) 2. 0(3, 1, 4, 3, 1) 
3. 0{2, 1, 4, 3, 2) 3. 0 (2, 1, 4, 3, 2) 
4. 0(2, 2, 4, 3, 2) 4. 0(2, 2, 4, 3, 1) 
5. 0 (2, 3, 4, 3, 1) 5. 0 (1, 2, 4, 3, 2) In fact, the algorithm consists in a process of backward reasoning (we starts from the final stale), method known io the literature as a. goal directed reasoning. 

We as!lume that are given: 

- Sf {the initial state for the agent); 
- SF( the final state that the agent tries to reach) - there could be a set of final states; 
- a sel of operators 0 = {01, 0 2 , .. · Od that arc available to the problem solving agent.. For each operator 0; the agent knows the three lists: PRE­CONDITION, ADD and DELETE. 

Tbe agent 's goal is to reach tho final :.tate SF, ~;tarting from the injtial state Sf, keeping ahlstory H of the visited states (H = {S1 , S2, · · · Sm}, where S1 = SI and $ 1 =SF), or of the applied operators (H = {O,,t,0.,2, · · · Oi,m- d). In the case that the problem has no solution, H will be empty. 
Tbe algorithm which determines a solution of the problem (if exist.s a solu­t ion) is described in Figure 2. 
The non-determinism of t he step 4 from the above described algorithm has to bo implemented as a kind of search procedure (a limited dcpth-fin;t search). 
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1. - we create a stack of goals S (the solut ion stack) LhaL initially contains the 
predicates that should be satisfied in the final state SF. In other words, 
if the finn.! st.at.e could be written as conjunction of logic sentences SF = 
{tPl and</>2 and ··· and<i>n}, then S = {¢1. I/J2. · · · 0n}i 

- SC (the current state):= SI (the initial stat.c) ; 
- H:=empty; 

2. Ir S is empty and the final state SF was reached, then the algorithm stops and 
the final solution is reported; else go to step 3 ; 

3. 3.1 I f the top of the stack contains an operator O,, on add the operator in fl, 
on remove t.he t.op of stack, on recalculate the current state SC at which on add 
the predicates from the A list of the operator 0,; go to step 2; e lse go to step 
3.2; 

3.2 On choose t.he predicate from the top of the stack (<i>J). If </>1 is satisfied in 
SC, we remove it from the top of the stack; go to step 2; else go to step 4; 

4. We look for the operator Oi (the operators, if are several) that makes </>1 true. If 
there are several operators 0,,1, Oi,2. · · · Oi,s, on ramify the solution {on obtain s 
s tacks) 

for j= l ,s (for each of the s stacks) 
- we add on the top of the stack S; the predicates from the PRECONDI­

TIOX list. of t.he operator 0;,3 ; go to step 3. 

Fig. 2. The algorithm to determine a solution in a LASG architecture 

4 Comparison b etween the LASG architecture and the 
traditional logic architecture 

Tlle Logic Architecture based on a stack of goals improves the traditional logic 
architecture for intelligent agenl.s in the following directions: 

- comparatively to the traditional logic approach, where the number of the 
frame axioms that should be saved in order to make a correct inference is 
large, the LASC architecture reduces this number. In other words, Lhe space 
complexity is reduced; 
because of a limited Depth First search. the time complexity is reduced, too; 

- lhe representation is very simple and elegant.. 

5 Experiment 

Because the above described architecture is based on logic and because the 
algorithm described in Figure 2 needs backtracking for finding aU solutions, the 
implementation was made in Visual Prolog. It is well-known that the declarative 
programming languages (as Prolog) have a built-in control mechanism which 
u.Uows finding all the solutions of a problem. 
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We have to say that the stack (stacks) of goals that we have t.O create for 
applying lhe algorithm {Figure 2) arc retained implicitly by the control strategy 
of Prolog (a mech!Ulism which allows backtracking). 

For iUust.rating the algorithm we consider the sim ple environment shown in 
Figure 3. 

F ig. 3. The agent's environment 

The positions filled with black on the maze contains obstacles. 
We implement.cd a Prolog program, which basic non-deterministic predicate 

is path(Xi, Yi, Xf, Yf, M, N , L) , having the flux model (i, i , i, i, i, i, o) , 
and the following signification for the arguments: 

- Xi, Yi- the coordinates (line and column) of t he initial position (the starting 
position for the agent); 

- Xf, Yf - the coordinates (line and column) of the final position (the position 
that !.he agcnL tries to reach) ; 

- M , N - number of lines and respectively columns of the maze; 
- L - the list of positions visited by the agent. for reaching SF starting from 

SI (if the problem has no solution, the list will be empty). 

For solving t he problem, we considered an LASG architecture and we applied 
Lbe algorithm described in Figure 2. 

The goal has t he form 
goal: path(4, 1, ~. 3 , 3, 3, L) 

and the i>Olut.ions are two: 
1=[(4, l j. (3, l j, (2, l j, (2, 2J, [2, 3], (1, 3IJ 
1=[(4, lJ. [3, l J, (2. 1], [2, 2], [1, 21 , [1, 3JI 
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\:Vc mention that we consider different rectij.!lgular environments and t he 
results arc good. 

6 Conclusions and future work 

In a logic based architecture, the intelligent behavior is generated in the system 
by a symbolic rcpn:senta.tion of the environment and of the behavior and by a 

symbolic manipulation of this represcntatjon. 
vVe intend to make a better evaluation for the LASG architecture and to com­

pare our approach with other work:>, such as, the traditional planning straLegics 
(STRIPS ba~ed), event. and situation calculus, and ~he dynamjc logic program­
ming approach [3]. 

Further work could be done in lhe following direction::;: 

- in which way we could use some heuristic informat ion in order to reduce the 
computational complexity of the deduction process; 

- in which way we can combine the traditional logic architecture with olhcr 
planning architectures (TWEAK, hierarchical planning architecture~ [8)); 

- in wich way the system is able to deal with dynamic environments. 
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