Agents’ executable specifications

Jacinto A. Dévila! and Mayerlin Y. Uzcéteguil?

! Facultad de Ingenieria. CeSiMo
Centro de Simulacién y Modelado.
2 Facultad de Ciencias. SUMA
Sistema Unificado de Microcomputacién Aplicada
Universidad de Los Andes.
Mérida 5101, Venezuela.
jacinto,maye@ula.ve

Abstract. This paper presents an specification for an intelligent agent
in classical logic. We argue that this type of specification, unlike, for in-
stance, specifications in modal logic, can be systematically translated into
an executable code that implements the agent on top of some computing
platform. They. therefore, deserve the name of executable specifications.
We show how to translated our agent’s specification into a running imple-
mentation and, then, how to migrate that specification from that logical
language into an industrial OO specification device (UML) and into an
OO programming language (JAVA), in order to build an actual agent.
Keywords: Agents, Logic, Executable Specifications

1 Introduction

This paper presents an specification for an intelligent agent in classical logic. We
argue that this type of specification, unlike, for instance, specifications in modal
logic, can be systematically translated into an exccutable code that implements
the agent on top of some computing platform. They, therefore, deserve the name
of ezecutable specifications, as suggested in [21].

In an introductory paper [22], Michacl Wooldridge and Nick Jennings dis-
tributed the issues associated with the design and construction of intelligent
agents in 3 groups: Agent thcorics, Agent architecturcs and agent languages.
Agent theories provide the answer to the questions: What is an agent? How
should it be characterized?. Agent architectures are engineering models of agents:
generic blue-prints that could guide the implementation of particular agents (in
softwarc or hardwarc). And Agent languages include all the software engineering
tools for programming and experimenting with agents.

This taxonomy of efforts is particularly convenient because it displays the
typical development process in agent technologies: first, onc decides what the
agent (or a multi-agent system) is. Later one decides how to implement it and,
then, onc decides how to use it to tackle particular problems (if this process fails,
the one starts all over again).

In this paper, we present a work that aims to relate the aforementioned
categories in a coherent whole. In the proposed [ramework, an agent theory is

169

seen as a specification that is systematically converted into an architecture with
a built-in agent programming language. Our proposal is to usc the same language
to state the theory, to implement the architecture and to program the agents.
This language is classical logic.

We start by discussing, in sections 2 the uses of logic to specify agents. We
explain how an agent theory can be stated in classical logic (rather than, for
instance, modal logic as it is usual). In section 3, we show how to translated our
agent’s specification into a running implementation. In section 4, we show how
to migrate that specification from that logical language into an industrial OO
specification device (UML) and into an OO programming language (JAVA) in
order to build an actual agent. Finally, in section 3, we conclude and define the
lines for further research and applications of this tecnology.

2 Agents in Logic

A specification states what a system is and the properties it has. Logic is widely
used as a specification language. There are, however, several refinements of logic
used as formal languages for specifications.

Agent specifications arc normally stated in some version of modal logic [3],
[11], [16]. Apparently this is the case because agents are normally regarded as in-
tentional systems (7], [15]. An intentional system is one characterized by so-called
mental attitudes: beliefs, desires intentions, among others. It is, by definition, an
autonomous system, with an internal state upon which it registers inputs and
from which it produces outputs. “Intentional system” is an uscful abstraction in
Artificial Intelligence, as it allows the description of entities that have their own
agendas(15).

It is normally accepted that the description of an agent requires “modalitics”
to represent intentional notions such as knowledge, belicfs and even goals [20],
[11], [22]. Modal logics are very attractive because descriptions in such languages
are very close to natural languages. The modeller can designate a modality to
indicate knowledge, another modality referring to beliefs and still other to refer to
goals. With such a set, the modeller can then state sentences directly translatable
into modal logic, such as:

Don Quijote believes Rocinante is a magnificent horse.
Don Quijote wants to be a knight.
Don Quijote believes he knows who Dulcinea’s love is.

It is true that modal logic is quite close to natural language and, therefore,
specifications are easily translatable into this logic. There is, however, a price to
pay. The price is a more complex semantics: possible world semantics. In possible
world semantics the fundamental constructs are the possible worlds: conceptual
configurations of the universe, each of which represents a state in which the
universe could possibly be. Thus, something is possibly true if it is true in some
of the worlds. Something is necessarily true if it is true in all possible worlds.

170

Modern modal logicians [16] found that they could “adapt” possible world
semantics to serve other modalities besides possibility and necessity, such as the
aforementioned intentional modalities.

We want to show that classical logic can be used, instead of modal logic, to
state the specification of agents. Classical logic can be tailored to very realistic
descriptions. Also specifications in classical logic has the advantage, we believe,
of systematic translation into executable code.

The work presented here started with a proposal by Bob Kowalski which,
basically, prescribed the use of logic programs to specify an agent that is both
reactive and rational [12], [13]. We developed that proposal into a complete
specification by including the specification of a proof procedure [10] that is used
as the rcasoning mechanism of the agent [4]. This specification is completely
translatable into logic programs and is, therefore, an executable specification.

To further illustrate the point, in what follows we show that the executable
specification in classical logic without modalitites can be mapped into an UML
specification® and it can be implement in an object-oriented framework, like the
Java platform

Before that, thought, we illustrate how our first-order-logical specification
answers questions in agent theory that arc answered with modal logics.

2.1 Alleged Deficiencies of Classical Logic to Represent Agents

While justifying their use of modal logic, Jennings and Wooldridge in [22] argued
that first-order classical logic (FOL) was not suitable for agent’s descriptions.
They pointed out two kinds of deficiencies: one in syntax and one in semantics.
In the first one, they said that the translation of:

Janine believes Cronos is the father of Zeus

yields a formula that is not first order and, moreover, not even truth-functional,
which is:

believes(janine, father(zeus, cronos)) [believes01]

Theirs, we argue, is only one possible way of reading this formula in logic.
Jennings and Wooldridge are foreed into this non-truth functionality by a wrong
translation into first-order classical logic.

Let us say, for instance, that father/2 is a term in first-order classical logic and
a fluent of the situation calculus [14]. Shanahan shows how to state the semantics
for these term forms [17] by defining a mapping from the pairs denotating Zeus,
as the son, and Cronos, as his father, into situations.

[believes01] is, therefore, the proposition that Janine believes in a particu-
lar situation (designated by Cronos being the father of Zeus). The formulation

3 UML: Unified Modelling Language, an object-oriented, visual specification
framework.

171

is still first-order logic and, therefore, truth-functional. Moreover, this truth-
functionality does not threaten the intended semantics for believes/2, which is
to model what an agent believes.

Jennings and Wooldridge's sccond objection is more serious. It says that the
intentional notions (such as beliefs and intentions) are referentially opaque. In
our example, for instance, as Zeus and Jupiter “by any reasonable interpretation”
[22] denote the same individual, one could write (in first-order logic):

zeus = jupiter [equals01]
and this, they say, would force the agent to deduce:
believes(janine, father(jupiier, cronos)) [believes02]

when it is not the case that Janine believes that Cronos is the father of Jupiter.
This argument, however, confuses the agent that believes in the truth of
[equals01] with Janine. It assumes that [equals01] represents common knowledge
shared by all the agents. This is a mistake. If Janine believes that Zeus and
Jupiter are the same individual, & proper rendering will be something like:

believes(janine, equals(zeus, jupiter)) [belicves03]

Only then, one can say that Janine belicves that Jupiter is the father of
Cronos, provided, of course, that one can associate other elements of “belicving”
to the agent Janine. One of these elements is the axiom:

VAg, X,Y (believes(Ag, father(X,Y)) + believes(Ag, father(X,Z)) A
believes(Ag, equals(Y, Z))) [believes04]

or some more general form of the rules that define the belicfs of any agent.

Thus, first-order logic does respect the nature of intentional notions, including
this so-called referential opacity. The language of FOL is still useful, on its own,
to specify and program agents.

In our cxample, believes/2 becomes a description of an agent’s basic beliefs
and of the rules the agent employs to deduce new belicfs. believes/2 can also be
scen as a predicate in meta-logic. Meta-logic can be used to provide a general
solution to agent specification by combining belief processing, as just shown,
with goal processing. believes/2 becomes the demo predicate mentioned below
as part of the agent architecture.

3 What is an agent?

An important debate in Al took place when Prof. Rodney Brooks presented
a strong casc against approaches based on symbolic manipulation and explicit
representations [2|. His experiments showed that effective, reactive behaviour
was possible without any representation or even a symbol-processing device in
the “agent”.

172

Trying to reconcile this recactive behaviour with knowledge representations
and with rational, accountable behaviour, Bob Kowalski [12,13] presented his
proposal for an agent that reacts timely to changes and situations in its envi-
ronment, while it is controlled by a symbolic, rule-based, inference engine.

We completed Kowalski’s proposal [4] by producing a detailed specification,
in logic, for that reactive and rational agent and a family of languages to program
that agent. Our agent has been code-named GLORIA®.

Fig. 1. GLORIA'’s specification in logic

cycle(K B, Goals, T)
«— demo(K B, Goals,Goals', R) A R<n
A act(K B, Goals’, Goals",T + R)
A eycle(K B, Goals", T + R+ 1) [GLOCYC]
act(K B, Goals, Goals', T,)
«— QGoals = PreferredPlan vV AltGoals
A ezecutables(Pre ferredPlan, T, These Actions)
A try(TheseActions, T,, Feedback)
A assimilate(Feedback, Goals, Goals') [GLOACT)
executables(Intentions, Ta, Next Acts)
— VA T(do(A,T) isin Intentions
A consistent((T' = T,) A Intentions)
— do(A,T,) 1s.in NextActs) [GLOEXE]
assimilate(Inputs, InGoals, OutGoals)
— VA, T, T (action(A, T, succeed) is_in Inputs
A do(A, T') isin InGoals
— do(A,T) is.in NGoal)
A VA, T, T (action(A, T, fails) is_in Inputs
A do§A,T') isn InGoals
— (false — do(A,T)) is-in NGoal)
A VP, T(obs(P,T) isain Inputs
— 0bs(P,T) is.in NGoal)
A YAtom(Atom is_in NGoal
— Atom is_in Inputs

A OutGoals = NGoal A InGoals [GLOASSI
Aisin B «— B =A A Rest [GLOISN
try(Output, T, Feedback) +— tested by the environment... [TRY

The main component in Kowalski’s logical description of an agent is a meta-
logic predicate: the cycle predicate, which was extended in the definition of
the GLORIA Agent Architecture [4]. Figure 1 shows the main formulac of the
specification code-named GLORIA.

In short, the cycle predicate, [GLOCYC], describes a process by which the
agent’s internal state changes, while the agent assimilates inputs from and posts
outputs to the environment (the act predicate, [GLOACT] and [GLOEXE]),
after time-periods devoted to reasoning (the demo predicate, shown below). The
things being posted arc the influences, just as prescribed in the situated multi-
agent theory by Ferber and Miiller [8] and in our multi-agent simulation theory
(5, 6].

4 GLORIA stands for a General-purpose, Logic-based, Open, Reactive and Intelligent
Agent,.

173

Observe the arguments for the demo predicate. This predicate reduces goals
to new goals by means of the definitions stored in the knowledge base. “demo” is,
preciscly, the embodiment of the definition of the “believes” relationship between
an agent and its beliefs. An agent believes what she/he/it can DEMOnstrate.
This explains the first three arguments of the demo predicate. The fourth ar-
gument is an important device to count the amount of resources or the time
available for rcasoning. At each cycle, the agent reasons for a bounded amount
of time and so it is prevented from jumping into infinite regress or total alienation
from its environment. This is a legitimate resource in the specification language
that allows us, the agent’s modellers, to encode an important dimension of the
bounded rationality: time for reasoning.

A full description of the demo predicate is in [13], [4]. However, to emphasize
the execcutable condition of the demo predicate, we show, in figures 2 - 3, a
simplified version written in PROLOG, which we arc using to test our simulation
platform [19]. In this version, the agent’s knowledge representation is restricted
to propositional logic. Obscrve that goals are represented as a list (i.c. the term
goals) of altcrnative plans. Plans, in turn, are represented as a list (i.c the splan
tcrm) of sub-plans. We treat terms that represent actions, sent from the agent
to the environment.

Fig. 2. The demo predicate: basic reduction and abductive rules for proposi-
cional logic.

% Stop reasoning

demop(_, G, G, [], 0).

demop(_,goals(true,R),R,[],).

% cut a failing plan

demop (Obs,goals(sp(false,_),0thers),G,I,R) :-
demop(Obs,Others,G,I,R).

% Negation

demop (Obs, goals (sp(not(A) ,RP) ,RG) ,NGoals,Influences,R) :—
atom(A),NR is R - 1,
traza([’transform negation into ic ’,A,’ -> false ’]),
demop(0Obs,goals(sp(if (sp(A,true),false),RP),RG),NGoals, Influences,NR).

% Cleaning if false,.. then ..

demop (Obs, goals(sp(if (sp(false,B),C),RP) ,RG),NGoals,Influences,R) :—
NR is R - 1,traza([’cleaning if false,’,B,’ then ’,C]),
demop(Obs,goals(RP,RG) ,NGoals, Influences,NR).

% Distribution of or within am if

demop (Obs, goals (sp(if (sp(or(A,Rest),B),C),RP),RG),NGoals,Influences,R) :-
NR is R - 1,
traza([’distribute ’,A,’ over ’,B,’ and ’,Rest,’ over ’,B]),
agregar_plan(A,B,NewA),demop(Obs,goals(sp(if (NewA,C),
sp(if (sp(Rest,B),C) ,RP)),RG),NGoals,Influences,NR).

% Propagation.

demop (Obs, goals(sp(if (sp(A,B),C) ,RP),RG) ,NGoals,Influences,R) :-
atom(4), (in(A,RP); member(A,Obs)),NR is R - 1,traza([’propagates ’,Al),
demop (Obs, goals(sp(if (B,C) ,RP),RG) ,NGoals,Influences,NR).

% Unfolding within an if

demop (Obs, goals(sp(if (sp(A,B),C) ,RP),RG),NGoals,Influences,R) :-
atom(A), unfoldable(A),definition(A,Def), NR is R - 1,

174

traza([’unfold ’,A,’ into ’,Def]),
demop (Obs, goals(sp(if (sp(Def,B),C) ,RP),RG),NGoals,Influences,NR).

% Negation in the body of an implication

demop (Dbs, goals (sp(if (sp(not(4),B),C),RP),RG) ,NGoals,Influences,R) :-
atom(A),NR is R - 1,
traza([’deals with not ’,A,’ in the body of an implication’]),
demop (Dbs, goals(sp(if (B,sp(or(sp(4,true),or(C,false)),true)),RP),RG),

NGoals,Influences,NR).

% true -> C is equivalent to C

demop (Obs, goals (sp(if (true,C) ,RP),RG) ,NGoals,Influences,R) :- % trace,
NR is R - 1,traza([’cleans true body of *,C]),
agregar_plan(C,RP,NP) ,demop(0bs,goals(NP,RG) ,NGoals,Influences,NR).

% (A or B) -> C is equivalent to A => C and B > C

demop (Obs, goals(sp(if (sp(or(4,B),C),D),RP),RG),NGoals,Influences,R):-
NR is R - 1,traza([’distributes if ’,A,’ or ’,B ,’ themn ’,Cl),
demop (Obs, goals (sp(if (sp(4,C),D),sp(if((B,C),D) ,RP)),RG),

NGoals,Influences,NR).

% (A or B) and C is equivalent to A and C or B and C

demop(Obs, goals(sp(or(A,B),RP),RG) ,NGoals, Influences,R) :-
agregar_plan(A,RP,NA) ,NR is R - 1,
traza([’distributes ’,A,’ or ’,B,’ over ’,RP]),
demop (Obs, goals (NA, goals(sp(B,RP),RG)) ,NGoals,Influences,NR).

% Simplification: A and A is equivalent to A

demop(Obs, goals(sp(A,RP) ,RG) ,NGoals,Influences,R) :-
atom(4),in(A,RP),NR is R - 1,traza([’simplifies ’',A,RP]),
demop (Obs, goals (RP,RG) ,NGoals, Influences,NR).

% Unfolding: A <- Def,A and RP is equivalent to Def and RP

demop(Obs, goals(sp(A,RP),RG) ,NGoals,Influences,R) :—
atom(4) ,unfoldable(A),definition(A,Def),NR is R - 1,
traza([’unfolds ’,A,Def]),
demop (Obs, goals (sp(Def,RP) ,RG) ,NGoals,Influences,NR).

%

% Abduction

demop (Obs, goals(sp(4,RP) ,RG) ,NGoals, [A| Influences],R) :—
atom(A) ,executable(4) ,traza([’abduces ’,A]),NR is R - 1,
demop (Obs, goals (RP,RG) ,NGoals,Influences,NR).

demop (Obs, goals(sp(A,RP) ,RG) ,NGoals,Influences,R) :—
atom(A) ,observable(A) ,member(A,Obs) ,NR is R - 1,
traza([’consumes ’,A]),
demop (Obs, goals(RP,RG) ,NGoals, Influences,NR) .

% Removal of plans for not observing on time.

demop (Obs,goals(sp(A,RP) ,RG) ,NGoals,Influences,R) :—
atom(A) ,observable(A) ,not (member(A,Obs)),NR is R - 1,
traza([’prunes ’,A,RP]),demop(0Obs,RG,NGoals,Influences,NR).

% Can’t to anything.. but shuffle the first plan..

demop (Obs, goals(sp(A,RP) ,RG) ,NG, Influences,R) :—
agregar_plan(RP,sp(A,true),NP),
traza([’shuffle’ ,RP,A]),NR is R - 1,
demop (Obs, goals(NP,RG) ,NG, Influences,NR) .

Fig. 3. The demo predicate customized for an example and its invocation.

append_plan(true, X, X).

append_plan(splan(A, X), Y, splan(4,2))
:— append_plan(X, Y, Z).

in(A, splan(a,)).

in(A, splan(_,R)) :— in(A, R).

definition(carry_umbrella,
or(splan(look_for_it, splan(seize_it, true)),
splan(borrow_it, true))).
executable (look_for_it).
executable(seize_it).
executable (borrow_it).
observable(it_rains).
% Integrity constraints.
ic(splan(if((it_rains, true), carry_umbrella), true)).
% Recent observations.
obs(splan(it_rains, true)).
v

A
% Invoking demo

.

demo(Gin, Gout, Influences) :-
ic(IC), obs(0bs),
(Gin = goals(Plan, Rest) ; (Plan = true, Rest = true)),
append_plan(IC, Plan, NPlan), % IC are put first into the plan.
append_plan(NPlan, Obs, NNPlan), % Observations are added last.
demop(goals (NNPlan, Rest), Gout, Influences, 50).
% 50 stands .. to bound the time for reasoning

4 From the logical specification into an OO
implementation

The specification in figurc 1 can and has been translated, almost literally, into a
Prolog implementation of the agent [4]. We soon understood, however, that the
agent could also be implemented in other languages that allow for procedural
descriptions. Moreover, that translation from the specification or from its pre-
liminary Prolog implementation into some other procedural language, could be
done systematically by exploiting the procedural reading of those logic programs.
We sct to test this hypothesis step by step.

Firstly, part of that first implementation in Prolog was reduced to the much
simpler code in figures 2-3 which corresponds to the agent’s inference engine,
but for propositional logic only. This is useful for a compact presentation, such
as the one in this paper, but also for running the experiments on automatic
translation which have been tried in [1].

Before that automatic translations, however, we tried translating the Prolog
code, by hand, into Java. Thus. using the cycle predicate as the specification,
one could produce this JAVA implementation of an agent:

Fig. 4. An cxample of the translation into Java.

public class Ag {
List observations;
List influences;
Goals goals;
Beliefs beliefs;
Goal permanentGoall;
/** Agent constructor initiates all the structures. */

176

public Ag() {
observations = null;
influences = null;
goals = new Goals();
beliefs = null;
// As a test, consider this "permanent goal
List rains = new List("It rains");
permanentGoall = new Goal('"carry umbrella", rains); }
/#* The main cycle/locus of control of the agent */
public void cycle() {
observe();
reason() ;
List result = execute();
result.writeAll();
cycle(); }
/** It’s used to try execute the intentions. #*/
public List execute() { return influences; }
/** It’s used to update the knowledge of the environment. */
public void observe() {
// Get inputs from the environment.. somehow..
List obs = new List("it raims");
// Update its records.
observations = obs; }
/** Very simple implementation of the reasoning engine. */
public void reason() {
// Every goal must be checked against observations..
if (permanentGoall.fired(observations)) {
goals.activateGoal(permanentGoall); };
influences = new List(goals.allGoals[goals.intention]); }
/#* Auxiliary method to test the agent. */
public static void main(String argv[]) {
Ag agent = new Ag();
agent.permanentGoall.body.writeAll();
agent.cycle(); }}

From this exercise we also obtained, by reverse engineering, the general UML
specification for an agent shown in figure 5.

In this OO framework, the class Ag contains the methods that implement
the agent which roughly correspond to the predicates in figurce 1. It does include
the methods that correspond to the cycle predicate (cycle()), the act pred-
icatc (observe() and execute()) and the demo predicate (reason()), all of
them adjusted to deal with simpler representations of goals and beliefs in the
agent. Beliefs, in fact, are not represented at all in this first translation into Java.
The method execute () communicates the agent’s intention to the environment.
observe(), on the contrary, communicates a description of the environment to
the agent. reason() implements the reasoning engine that mediates between
perceptions and actions. The accompanying classes implements the data struc-
tures (and associated methods) required to store and managce agent’s goals and
beliefs, among other things. Note that a basic data structure: a List class, is an
cssential part of the implementation. We require a list with accessible head and
tail components only. For the sake of space, in figure 5 only the Goals’ attributes
and methods are shown.

The simplification of goals is important as much of the processing in the
agent’s inference engine depends upon those data structures. We provided, by

177

Fig. 5. Agent specification in UML

goat

akics Snng|
rherton e

3T 4e

+ rtantens) - Ging
| ¥ greutcaming vey sy

Suakel) Ballsty el
Avannakgeal GAN) il p—
(TR f
L °

Priorme: nrres

nhead Etrec 1 -
Gosiurcaiiees Sreg)
Coscarzhuzian SHng, snstons | L)
~lelilly %] Lo
| Fo—

| Ly

pratarances | o

hand, the basic data structures to store goals as terms, representing condition-
action rules. The basic Java class for these purposes in the List class, which sup-
ports the representation of conjunction of conditions in the body of a condition-
action rule. The head of these rules is always a low-level, executable action for
the agent. This is a critical restriction with respect to the original specification
which allows for complex, compound actions, that can be reduced, with further
reasoning, to exccutable, atomic actions. For this, the more elaborated engine
described in figures 2-3 is required.

Observe that in the Java implementation, and also for the sake of simplicity, a
plan contains only onc action. The Goals class implements the set of alternative
plans for the agent.

In the example in figure 4, we test the agent with a very simple rule: “if it
rains then carry an umbrella”, which is codified as a list of strings. Observe that
the inputs corresponds to the string “it rains”, again for simplicity.

It is worth recalling that the core of the JAVA code is obtained as a direct
translation from the logic formulac. This has cncouraged us to start exploring
automatic, partial translation procedures. In [1], this is nicely achieved by a sct
of Java programs that transform Prolog code into a collection of Java classes, a
class for each predicate definition in the original code. As a very brief account of
the strategy, let us imagine that the agent original code in Prolog includes the
clause:

agent (In,Out) :— reason(In,InTG), act(InTG, Out).

In this case, the programs written by Amaya [1] will produce a Java class
Agent_2 whose internal structure is something like this:

Reason_2 reason_2i = new Reason_2();
Act_2 act_2i = new Act_2();
while(i1=0 or il< reason_2i.getNumberTerms()) { ...

178

if (reason_2i.searchT(terml, term2, int)=true){
if(act_2i.searchT(term2, term3, int)=true){ ...
back = true; ...
return back; }}
il++; ¥ ...

where the object instances reason_2i and act_2i represent the predicates
that are being invoked in the body of agent/2, and the while and if structures
implement the search tree associated to this predicate. Amaya has gone on to
allow for search strategies specific to each predicate.

We want to gather as much experience as possible in systematic or automatic
translations because we expect inference engine customization to be part of the
regular practice in agent development. With a systematic or semi-automatic
methodology, we could concentrate on customization at the level of the specifi-
cation, where concepts and trade-off arc clearer, and then produce the executable
code with minimal additional effort and, more importantly, minimal error.

5 Conclusions and further work

This paper describes the formal specification of an agent. The language used to
state the specification is a form of classical logic, as opposed to modal logic.
We have shown that this specification can be systematically translated into
other formalisms and, more importantly, into executable code. It is, therefore, a
mechanism for the “agentfication process” described by Shoham [18] by means
of which a specification produces an agent. We believe this agentfication pro-
cess can greatly benefit from using erecutable specifications, where specifica-
tion/implementation trade-offs can be more casily understood.

This work is part of a project to build a multi-agent simulation platform
called GALATEA. We previously presented the specification of the simulation
platform [5] and described the multi-agent and OO simulation platform [6]. The
following steps are 1) to assembly the platform with the interface between agents
and the simulation engine 2) to develop alternative inference engines for the
agent (a different embodiment of the demo predicate) and 3) to perform the
first multi-agent simulation experiments.

Acknowledgements

This work has been partially funded by CDCHT-University of Los Andes projects
1-524-95-02-A A, 1-666-99-02-E and I-667-99-02-B.

References

1. Jhon E. Amaya, Infegracidn de la programacion declarativa y la programacion ori-
entada por objetos para desarrollar agentes inteligentes, Master’s thesis, Universi-
dad de Los Andes, Mérida, Venezuela, June 2003.

10.

11.

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

179

. Rodney Brooks, Intelligence without representation, Artificial Intelligence (1991),

139-159.

. P. R. Cohen and H. J. Levesque, [ntention is choice with commitment, Artificial

Intelligence 42 (1990), 213-261.

. Jacinto A. Ddvila, Agents in logic programming, Ph.D. thesis, Imperial College of

Science, Technology and Medicine, London, UK, June 1997.

. Jacinto A. Dévila and Kay A. Tucci, Towards a logic-based, multi-agent simulation

theory, International Conference on Modelling, Simulation and Neural Networks
[MSNN-2000] (Mérida, Venezuela), AMSE & ULA, October, 22-24 2000, pp. 199
215.

. Jacinto A. Davila and Mayerlin Uzcdtegui, Galatea: A multi-agent simulation plai-

form, International Conference on Modelling, Simulation and Neural Networks
[MSNN-2000] (Mérida, Venezuela), AMSE & ULA, October, 22-24 2000, pp. 217—
233.

. Daniel Dennett, The intentional stance, The MIT Press, Cambridge, MA, 1987.
. Jacques Ferber and Jean-Pierre Miiller, Influences and reaction: a model of situated

multiagent systems, ICMAS-96, 1996, pp. 72-79.

. Martin Fowler and Kendall Scott, Uml distilled: A brief guide to the standard object

modeling language, second ed., Addison-Wesley Pub Co, 1999.

T. H. Fung and Robert A. Kowalski. The iff proof procedure for abductive logic
programming, Journal of Logic Programming (1997).

Nicholas R. Jennings, Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions, Artificial Intelligence 74 (1995), no. 2.
Robert A. Kowalski, Using metalogic to reconcile reactive with rational agents,
Meta-Logics and Logic Programming (K. Apt and F. Turini, eds.), MIT Press,
1995.

Robert A. Kowalski and Fariba Sadri, Towards a unified agent architecture that
cornbine rationality with reactivity, LID’96 Workshop on Logic in Databases (San
Miniato, Italy) (Dino Pedreschi and Carlos Zaniolo, eds.), July 1996.

J. McCarthy and P. Hayes, Somne philosophical problems from the standpoint of
artificial wtelligence, Machine Intelligence 4 (1969), 463-502.

. John. McCarthy, Making robols conscious of their mental states, Machine Intelli-

gence 15 (1995).

Moore, Logic and representation, Center for the Study of Language and Information
(CSLI), 333 Ravenswood Avenue, Menlo Park, CA 94025, 1995, ISBN 1-881526-
15-1.

Murray Shanahan, Solving the frame problem: A mathematical investigation of the
common sense low of inertia, MIT Press, 1997.

Yoav Shoham, Agent-oriented programming, Technical Report STAN-CS-1335-90,
Stanford University, Stanford, CA 94305, 1990.

Mayerlin Y. Uzcdtegui, Diserio de la plataforma de simulacion de sistemas multi-
agentes galatea, Master's thesis, Maestria en Computacién, Universidad de Los
Andes. Mérida. Venezuela, 2002, Tutor: Ddvila, Jacinto.

Michael Wooldridge, The logical modelling of computational multi-agent systems,
Ph.D. thesis, Department of Computation, Manchester Metropolitan University,
Manchester, UK, October 1992.

Michael Wooldridge and P Ciancarini, Agent-oriented software engineering: The
state of the art, Springer-Verlag Lecture Notes in AL 1957 (2001).

Michael Wooldridge and Nicholas R. Jennings, Intelligent agents: Theory and prac-
tice, Knowledge Engineering Review 10 (1995), no. 2, 115-152.

