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Abstract. We assume the requirements or desi res of an agent are mod­
eled by a logic program. In a multi-agent setting, a joint decision of the 
agents, reflecting a compromise of t he various requirements, corresponds 
to a suitable joint model of the respective logic programs. In this paper, 
an appropriate semantics for selecting joint models representing compro­
mises is proposed: the joint fixpoint semantics. The intended joint models 
are defined to be the (minimal) joint fi:xpoints of the agent programs. We 
study computational propert.ie.~ of this new semantics showing that de­
termining w heU1er two (or more) logic programs have a joint fixpoint is 
NP complete. This remains true even for entirely positive logic programs. 
vVe aL~o study the comp lexi~y of skeptical and credulous reasoning under 
the joint fixpoint semantics. The former is proven to be co-~P complete, 
while the latter is Ef complete. We show how the joint fixpoints of a set 
of logic programs can be computed as stable sets. 

1 The Joint Fixpoint Semantics for Finding Compromises 

Assume there are three agents, Mary, Larry, and Brenda, who discuss about 
dinner. Mary and Larry care much about food. Brenda is very tolerant about 
food. She is picky about drinks, however. Here arc their respective requirements: 
Mary: I would like to have soup. I'd like to have either meat or fish this evening. I 
don 't like potatoes. Spinach is.ekay. Carrots are okay, too {but I don't neces~arily 
care for any of t hose) . Concerning drinks, I have no real preference among beer, 
red wine, and white wine. Larry: Soup is, fine (but not a must) . However, if we 
have soup , I want to eat meat. Fish is okay. I'd like to have either spinach or 
potatoes. Carrots (in addition) arc okay for me, if somebody wants them. Every 
drink (among beer, red or white wine) is fine. Brenda: Whatever you decide 
about food is okay for me. However, I ca.re much about drinks. U we eat fish I 
insist on white wine, and if we eat meat, red wine is okay (but not a must). 

Requests and consents of the above form can he expres~;ed in logic program­
ming with negation as failure (not) , with an absurdity sign J.. and with an ad­
ditional modality okay(p) , meaning that p is tolerated. Modal atoms okay(p) 
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can only appear in the head of a ru1e.1 This mean~ that pis not requested, but 
accepted if necessary in order to reach a compromise. A program written in this 
enriched language is referred to as a Compromise Logic Prog1·am (COLP). The 
desiles and consents of Mary, Larry, and Brenda arc represented by the following 
COLPS ?.,., P1 , and Pb , respectively: 

P,. : 
..l ~ 

okay(spinach) ~ 
okay( carrots) ~ 

soup +--

fish ~ 
meat ~ 

okay(redwine) +-
okay(whi tewi ne) +-

okay(beer) ~ 

potatoes potatoes 
spinach 

okay( soup) 
meat 

not meat okay( fish) 
not fish okay( carrots) 

okay(redwine) 
okay( whi tewine) 

okay(beer) 

Po : 
okay(spinach) +­

okay( carrots) <­
okay(soup) +­

okay(potatoes) <­

okay(fisb) <­

okay(meat) +­

oka,y(redwine) ~ meat 

whitewine ~fish 
okay(beer) +--

~: 
~ not spinach 
~ not potatoes 
~ 

<- soup 
~ 

~ 

~ 

<-

~ 

What we are looking for is a good semantics, which allows us to determine the 
int uitively intended models representing the acceptable compromises satisfying 
all requi1·ements of the agents taking into account also their consents (i.e., the 
okay statements) . To this aim, let us first more or less informally specify some 
desiderata of such a semantics. 
Requirements: 

1. Every intended model should be a model of each single agent 's program 
(when okay-clauses are disregarded and ..lis interpreted as false). 

2. For each agent COLP P, each intended model Af, and each atom p EM, 
one of the two following conditions should hold: (a) p is supported in the 
classical sen:;e by i\tf in P , i.e., there is at least one rule of P with head p 
and body true in lvl ; or (b) pis supported by some other agent, and okay(p) 
is supported by ]vf in P. (This is the case when the agent corresponding to 
P accept~ p by compromise.) 

1 We make this r~triction for simplicity here. Our semantics could be extended to 
progra!D8 containing okay literals in rule bodies , too. 
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3. M should be as small as possible, i.e., no unnecessary atoms should be 
contain<-'<~ in M. 

4. For any agent program P, the body atoms of a clause of P whose head is .J.. 
cannot be t;imultaneously satisfied by }.![. 

It is easy to see that these requirements are not fulfilled, if we consider any 
semantics that operates on the union of all agent programs (i.e., on the single 
program obtained by putting together all agent programs) . In fact , by performing 
such a union, we would unite all okay statements and thus risk to be more liberal 
than intended. Any satisfactory approach to fulfill the above requirements mu~:>t 
thus operate on the set of the agent programs and not on their union. 

The first conLribuLion of Lhis paper is to present a semanLics for "compro­
mise logic programming" that :;atisfie:; an the requirements and appears to be 
extremely natural, intuitive, and clear-cut. This semantics is referred to as tho 
Joint Fixpomt Semantics (JFP Semantics). Interestingly, it completely relics on 
the well-known fi.xpoint semantics for logic programs wilh negation (141 . The 
JFP semantics, and, in particular, the new okay modality, i!:i fully explained in 
terms of cla!)Sic.al logic program constructs. We define a function u mapping a 
COLP into a classical logic program as follows. (i) For each COLP P, we have: 
u(P) = {u(r) I r is a rule of P} . (ii) Each classical ruler (i.e., rule in whose 
head ncit.bcr okay nor .J.. appears) is invariant under cr, i.e., u(r) = r. (iii) For 
each moda.l rule r = okay(p) ~ body, we have: u(r) = p ~ p, body. (iv) For 
each rule r= .J.. +-- body appearing in some agent program P,. let absi be a new 
atom occurring in no other program P1, j i i, and let. u(r) = abs; +- body. 

A fixpoint of a (classical} LP P is a supported model of P . A formal def­
inition will be given in Section 2. Recall that each positive LP has a unique 
minimal fixpoint. A program with negation in rule bodies may have several 
m.inimal fi.xpoints. We denoLe by FP(Q) the set of all Iix:point~> of aLP Q. If 
T = {Q1 , .• • , Qn} is a ~et of (clas~ical) LPs defined over the same set of atoms, 
t hen J F P(T) denotes t he set of joint fixpoints of Q 1 ... , Q .. : 

By M JFP(T) or M JFP(Q1 , .•• , Q,.J we denote the set of a ll set-minimal cle­
ments of J F P(T). We arc now ready for specifying t he joint fixpoint semantics 
for COLPs. We do this, by assigning l.o each setS = {P1 , P2 ... , Pn} of COLPs 
a set. of inlendcd models M (S) by: 

M (S) = MJPP(u(S))= MJFP(u(P1),u(P2 ) , •.• ,u(P.,)). 

The following proposition is easy to verify (we do not give a forma.! proof here). 

Proposition 1. 1'he joint fixpoint semantics for COLPs satisfies all require­
menL~ 1-4. 

To illustrate t he joint fixpoint semantics, consider the programs u(Pm), u(Pt), 
and u(Pb) of our example programs: 
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u(Pm): u(Pt) : 
absm .._ potatoes potatoes +--- not spinach 

spinach .._ spinach spinach <---- noL potatoes 
carrots .._ carrots soup +--- soup 

soup - meat +--- soup 
fi sh +--- noi meat fish +--- fish 
meat +--- not fish carrots +--- carrots 

redlOline +--- redwine redwine +- red wine 
whitewine +--- whitewine whitewine +--- whitewine 

beer +--- beer beer +--- beer 

u(Pb) : 
spinach - spinach 
carrots +--- carrots 

soup +--- soup 
potatoes <---- potatoes 

fish +- fish 
meat +--- meat 

red wine +--- redlrine,meat 
whit ewine - fish 

beer ~ beer 

It is easily verifiable that a(Pm ), cr(Pt) and cr(Pb ) admit an unique mini­
mal joint fixpoint that is M = {soup. meat , spinach}. Examples of joint fix­
points t.hat. are not minimal are lvh = {soup. meat, spinach, carrots} and 
i\1!1 = {soup, meat, spinach, red wine}. Note that a :;et of COLPs can have 
multiple intended models. For example, if we replace the rule j_ +- potatoes 
by the ru le okay(potatoes) +--- in the program Pm we obtain that. the pro­
grams u(P111 ), cr(Pr) and cr(Pb) admit as minin1al joint flxpoint alt:>o the model 
l\1[' = {soup, meat , potatoes} in addition to l\11. 

We have thus introduced a completely new semantics for describing com­
promises of agents who declare their requirements and their consents. Thi:; se­
mantics i:; ba~:>ed on a new usc of the classical machinery of fixpoint:; of logk 
programs, in particular, all minimal joint fixpoint:> of the logic programs asso­
ciated to the given COLPs. Note that our translat ion from COLPs to classical 
programs provides a new meaning t o clauses of the form p .._ p. lo the classical 
:>ingle-program fixpoint semantics, such clauses have the somewhat questionable 
meaning "p can be opted to be pad of a fixpoint at any t ime". In our mult i agent 
context, such clauses correspond to modal atoms okay(p) and have the following 
precise meaning: ''if p is required by another agent, then let it be" . 

The computationally interesting tasks a...-:sociated with t he joint fixpoint sc­
mant.ics arc the following: (1) Joint Fixpoint Existence: Determining whether 
a set of LPs has a joint fixpoint (of course, there is a minimal JFP iff there is 
a JF P ). This corresponds to determining whether a. set of agents can reach a 
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compromise at alL (2) Skeptical reasoning under the JFP semantics: This 
means determining whether some atom p occurs in all minimal JFPs of some 
logic programs P, , ... , P,.. Note that this is equivalent to determining whether p 
occurs in all JFPs of P1 , . . . , P11 • In this case, any compromise will force all agents 
to adopt p. This is of course an interesting information worth to be known. (3) 
Credulous Reasoning: This means, determining whether some atom p occurs 
in at least one .minimal JFP. In practice this means that a compromise containing 
p .may be chosen. 

In Section 4 we study the complexity of these three problems. In particu­
lar, we show that: (i) JFP existence is NP complete even for pairs P1 ,P 2 of 
purely positive programs (in which neither t he symbol not, nor the absurdity 
symbol appear). This is rather astonishing, because each positive program has 
a unique least fixpoint, and one could have t hought that a joint fixpoint could 
be consLructed from least fixpoints of P1 and P2 ; (ii) Skeptical J FP reasoning 
ls co-l\"P complete and tlms exaetly as hard as infercncing in classical proposi­
tional logic, or as reasoning under the stable model semantics [9, 20, 21, 19]; (iii) 
Credulous JFP reasoning is E~-complete, and thus exactly as hard as credu­
lous reasoning in default logic [18, 8, 11J , 'Or as circumscriptive reasoning [16, 4, 
11], or as disjuncl"ive Logie programs under the stable model semantics [5]. In 
Section 5 we construct a polynomial-time t ranslation between the JFP seman­
tics and the stable model semantics for LPs with n egat ion [9]. The advantage 
of such a translation is that existing engines [7, 17] (that are rather efficient in 
practice) for computing stable models can be used to compute joint fixpoints. 
In particular, the tasks JFP existence and skeptical JFP reasoning can be eas­
ily translated to analogous LP tasks according to the stable model semanties. 
This enables the construction of simple frontends for JFP reasoning to systems 
such asS-models [17], the dlv system [7] , or others. Before proceeding with our 
technical exposition, let us discuss related work. To the best of our knowledge, 
we are not aware of similar approaches. T he work in the area of Belief-Desire­
Intention is mainly based on various modal logics [24 26]. Closest to our work is 
perhaps [221. This approach is based on logic programs too and considers diag­
nostic agents that need to reach a common diagnosis. So the problem is similar 
to our setting but t heir methods to solve it arc not. There is also the CaseLP 
approach in [15] based on logic programs, but the authors do not consider the 
problem to compute common~onclusions between the agents. Various methods 
for giving semantics to logic programs with conflicting rules have been defined 
in the literature (e.g. Ordered Logic Programming [2, 3], the PARK model [10], 
or Courteous Logic Programming for prioritized conflict handling [12]) . An in­
teresting extension of logic programming to provide multi-agent functionality is 
presented in [13j. This model is, however , very different from ours and has com­
pletely different aims. Its goal is not to reach common conclusions or compro­
mises, but to achieve a "thinking component" of an agent via a proof procedure 
the combines abductive backward reasoning with a forward reasoning method 
that uses constraint checking methods in t he style of Constraint Logic P rogram­
ming. An agent can observe changes as inputs and react to them under time 
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resource bounds, using an "agent cycle" that alternates between thinking oper­
ations, choices, and actions. In summary, this proof-theoretic model of dynamic 
agent interaction with time parameters cannot be reasonably compared to our 
method of model-theoretically defining the concept of a compromise of agent de­
sires that arc (statically) defined through a set of logic programs. Finally, there 
is the IMPACT project [23], a multiagent framework the underlying semantics 
of which is also based on logic programs. Although the authors do not consider 
explicitly the problem of reaching common conclusions, it seems that their usc 
of (ilaL) modalities might be used to encode some of t he examples considered in 
this paper. But in all the above cases, our usc of a joint flxpoiul of a. set of logic 
programs is new and has not been considered before. 

For space limitations proofs of theorems are not given here. T hey can be 
found ln the full version of t,his paper [1). 

2 Preliminaries on Logic Programming 

A propositional logic program P is defined on a finite set of propositional vari­
able.::; Var(P). An atom or positive literal of Pis an elP.ment a E Var(P) ; a 
negatwe literal is the negation not a of an atom. A program claWJe or rule r is 

m~O. 

where a,b1 , • · · , bk arc positive literals and not bk+I• .. ·,not bm arc negative lit.­
crals. a is called the head of r , while the conjunction b1/\ · · • 1\b.~;l\not b.~;+ 1 /\ 
· · ·/\not bm is its body. A (propositional) logic program P consists of a finite set 
of program clauses whose propositional variables are all in Var('P). (Note, how­
ever, that Var(P) may contain atoms that do not occur in P). We denote by 
V ar· (P) Lhe set of atoms of V ar(P ) appearing in P. A logic program is positive 
if no negative literal occurs in it. An (Herbrand) interpr-etation for a. p rogram P 
is a subset of Var(P). A positive literal a (resp. a. negative literal not a) is tnte 
w.r.t. an inLcrpretation I if a E T (resp. a ¢:. I); otherwise it is false. A rule is 
satisfied (or i!; /;r~te) w.r.t. J if its head is true or its body is false w.r.t. J. An 
interpretation T is a (Herbrand} model of a program P if il satisfies all rules in 
P. For each program P, the immediate conBequence operator Tp is a function 
from 2Vur(P) to 2Var('P) defined as follows. For each interpretation I~ Var·(P), 
Tp(l) consists of the set of all heads of rules in P whose bodies evaluate to 
true in [. Note that Tp is well-defined also for programs with negations in rule 
bodles. An interpretation I is a fixpoint of a logic program P if I is a fix point of 
the associated traru;formation T., , i.e., if Tp(J) = I . Note that each fixpoi.nt of P 
is also a model of P, but the converse docs not hold in general. For example the 
program consisting of the single rule q ~ p has as unique fixpoint the empty set; 
however, the interpretation M = {p, q} is a model of P . The set of all fix points 
of P is denoted by F P(P ). Let I be an interpretation of P and let a E V ar(P) 
be an atom. We say that a is supported by I (in P) if there is a rule of P with 
head a whose body evaluates to true in I , i.e., if a E T.,(I). From the definition 
of fix point iL immediately fo!Jows that an interpretation I of P is a fixpoint of P 
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iff I coincides with the set of all atoms supported by I . For any interpretation 
I~ Var(P) , we define T~(I) = I and for all i ~ 0, r;,+l(J) = Tp(T~(I)). If 
P is a positive program, then Tp is monotonic and thus has a least fixpoint 
lfp(P) = T!p(0). This least fL'q)oint coincides with the least Herbrand model 
lm{'P) of P, i.e .. lm(P) = lfp(P) . For non-positive programs P, Tp is in general 
not monotonic, and P does not necessarily have a least fixpoint {it may even 
have no lixpoint at all). It was shown in [14J ~hat it is NP complete to determine 
whether a non-positive logic program has a £ixpoint. 

Now we recall the notion of stable models for propositional logic programs 
and we report some results from [6J that we shall usc in the following. Let P 
be a logic program and I ~ V m·(P) be an interpretation. The Gelfond-Lifschitz 
transjo1·mation (or simply GL-tnwsfot·rnation) of P w.r.t. I , denoted by P 1 is 
the program obtained by P by removing all rules containing a negative literal 
not b in the body such that b E r, and by removing all negative literals from the 
remaining rules. 

D efinition 1 ([9]) . GivenalogicprogramP andaninterp1·etationM ~ Va1·(P), 
NI is a stable model of P if M = TP,w (0) . 

A logic program P admits in general a number (possibly zero) of stable models. 
We denote by SNI(P) the set of all stable model;; of the program P . 

Definition 2 ([6]). Lel P1 and P2 be programs. We say that P2 potent ially 
u~e:; P1 (denoted P2 1> Pt) if each predicate that occurs in some rule head of Pz 
does not occur (positively or negatively) in P1 . 

Given a set of atoms M , the program of lvf is the set of rules {a<-- I a E 1\II}. 
With a little abuse of notation, when the context is clear, we denote the program 
of a set of atoms M by the same symbol M. 

Proposition 2 ( [6]), Let P = P 1 U P 2 be a program s~tch that P 2 1> P 1 • Then: 
SM(P) = UMeSM(Pt) SM(lvf U P2) . 

Proposition 3 ( [6]) . Let P = P1 U P2 be a prvgmm s·uch that Vm·"(P1 ) n 
Va·r•(P2) = 0.2 Then: SM(P) = U M, ESM(Pt),Nl2 ESM('P2 ){Mt U M2}. 

3 Joint Fixpoints 

In this section we introduce the Joint Fixpoint Semantics for logic programs. 
Let P 1,P2, ... P .. be logic programs ::;uch that Var(P1) = Var(P2) = 

= Va.r('Pn)· We define t he !:let JFP(P1, P2 , . . , , Pn ) of joint fixpoints by: 

JFP(P1,P2, . . . ,Pn) = FP(Pl)nFP(P2)n···nFP(Pn)· 

In words, J F P(P1 , P 2, •• • , Pn) consists of all common £ixpoints to the programs 
P1, . . . , P,. Moreover, we define the set M JFP(Pt • ... , Pn) of minimal joint 
fixpoint as: 

2 Recall that Var · (P) denotel; the set of atoms actually appearing in P. 
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i\lf JFP(Pt 1 ••• 1 P,.) = {FE JFP(P1 , ... 1 Pn) I 
J3F' E JFP(Pt , ... 1 Pn)AF' C F}. 

M J F P(Pt . ... , P n) consists of all minimal common fixpoints to t he programs 
P., ... I P,.. 

Since, as mentioned, it is NP complete to determine whether a single non­
positive program has a fix point, determining whether a set of programs contain­
ing at least one non-positive program has a joint fixpoint is tr ivia lly NP hard. 
Moreover, since this problem is easily seen to be in NP, it is NP complf!te. In this 
paper we are ah;o interested in joint fixpoints of positive prograuu;. In particular. 
we will investigate the issue whether a set of positive programs has a minimal 
JFP and we will study dillerent forms of reasoning with joint .fixpoints. The fol­
lowing example showH that a set of positive logic programs may have zero, one, 
or more joint fixpoints. 

Example 1. 

- If 1\ = {p ~} and P2 = {q <-}, Lhen JFP(Pt, P2) = M JFP(P11 Pz) = 0. 
- lf P 1 = {p ,_ q} and P2 = {p <- s} , then JFP(P1 , Pz) = M JFP(Pt, P2) = 

{0}. 
- If P 1 = {p <-} and P2 = {p +-- p}, then JFP(Pt, P2) = MJFP(P1 , Pz) = 

{{p}}. 
-If Pt = {p +- p, q <- q} and P2 = {p .-- q, q ..- p} , t hen .!FP(P1, P2) = 

{0. {p,q}} lJ.nd MJFP(P1,Pz) = {0}. 

We will also consider credulous and skeptical reasoning under joint fixpoints. Let 
S = {Pt , ... , Pn} be a set of logic programs over the same set of prop01;itional 
variables Var. Let p be an atom in Var. 

- p is a c1·edulous MJFP-consequence of S if for some minimal joint fix-point 
T E NI JFP(Pt. . .. , Pn) it holds that p E J . 

- p h; a skeptical MJFP-consequence of S if for all minimal joint fixpoints 
I E M J F P(Pt, ... , Pn) it, holclli that p E I . 

We define the following decision problems: 
PROBLEM .JFP (JFP existence): 

Instance: A set of positive logic programs P1 1 ••• , Pn defined over the same set 
of propositional variables. 

Q uestion: Is JFP(P1, ••• Pn) =f 0, i.e., do the programs Pt, ... 1 Pn have a joint 
fixpoint? 

The problem JFP2 is the restriction of JFP to instances consisting of two 
p01;itive programs: 
PROBLEM JFP2 (JFP existence re!>tril.'ted to the case of two programs): 

Ins tance: A pair of positive logic programs Pt and P2. 
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Question: Is J F P(P1 , P2 ) :/: 0, i.e., do the programs P1 and P2 have a joint 
fix point? 

PROBLEM MJFPs (skeptical rt!asoning under the .JFS semantics): 

Instance A set of posiLive logic programs S = {P1 , •.. , Pn} defined over the 
same set of propositional variables V ar and an atom p E V ar. 

Question I:; p a skeptical MJFP-conscquence of S? 

PROBLEM MJFPc (credulous reasoning under the JFS semantics): 

Instance A set of posiLive logic programs S = {P1 , . . . , Pn} defined over the 
same seL V ar of propositional variables and and an atom p E V ar-. 

Question Is p a credulous M.JFP-consequence of 8? 

Also in this case, we define the restrictions of MJFPs and MJFPc Lo t.he case 

in which S contains only Lwo programs. We denote such decision problems by 

YIJFP2 and MJFP2, respectively. 

4 Complexity Results 

Theorem 1. The pmblems JFP and .JFP2 are NP complete. 

Theorem 2. The problems MJFPs and MJFP~ are co-NP complete. 

Now we analyze the complexity of t he problems MJFP" and MJFP2. First 

we give some preliminary definition and results. 
A positive propositional disjunctive Logic program (DL+-program) is a posi­

tive propositional theory in DNF. We denote the i-th rule of a D L +-program 

consisting of L > 0 rules by: hiV · · · Vh~, ~ body(r,) , where ni > 0, body(1·i) 
denotes a (possibly empty) conjunction of positive literals, and r; is a label not 

occurring in V ar(P) identifying the rule i, for each 1 :5 i :5 t. 
The models M (P) of the D L +-program P precisely coincide to classical 

models of the program seen as positive propositional t heory in DNF. The same 

happens for the minimal models MM(P) . 

Definition 3. Let P be a DL+ -program. consisting of l > 0 rules. Rp is a 

(disjun ction-j1-ee) program o'uer· the set of propositional variables Var(P)U{-r1, ... , 

rt} consisting of the following se t rules: Rp = h ~ h; II :5 i :5 i/\1 :5 j 5. n;}. 
Morwver, we define the DL + -prof}T·am p • = P U Rp . 

Lemma 1. LetP be a DL+-prof}T-am. Then: MM(P•) = UMEMM('P) MM(M u 
Rp). 

We recall that the minimal model semantics assigns to P the set M M(P) 
of minimal models of P. A propositional formula rj> itl a credulous conseq·uence 

under the mininlal model semantics ofP if for some ME Mkl(P) it holds that 

M F </J . Observe that the problem of deciding whether a propositional formula. 
is a credulous consequence under t he minimal model semantics of a positive 

disjunctive program is Ef-completc [5. 6]. 
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Lemma 2. Given a DL + -prvg·ram P and an atom p E V ar(P), p is a credulous 
conseqttence under the minimal models semantics of P if and only if it is a 
cred7.tlous consequence under the minimal models semantics of p• . 

Definition 4. Let P be a DL+ -pmgram consi.sting oft > 0 rules. We define 
the set JUSTr(p•) as the set of models M of P"' such that each atom in M n 
{r1 , ... , rt} is s·uppo1·ted by JVJ {in p• ). JU S1.,.(P•) is said the set of rule-justified 
models (o1· simply r-justified models) of p•. 

Moreover, we define the set lvlJUSTr(P*) of minimal r-justified models of 
P* as: 1\II JUST(P•) = {ME JUSTr(P"') I J3M' E JUSF(P*)I\lvl1 C M}. 

Lemma 3. Let P be a DL+-pmgrarn. Then: MM(P*) = MJUST(P*). 

D efinition 5. Let P be a DL+ -program consisting oft> 0 r-ules. We define the 
two pr-ograms Ph and Pb associated to the pmgram P in the follo·uring way: 
The pr·ogr-am Ph is the union of the sets of r·ules S1i and S~ defined as follows : 

51~ = {ri ~ h] I 1 ~ i ~ t A 1 ~ j ::; nd 
s~ = {x ~X I X E Var(P)} 

The pr·ogram Ph is the union of the sets of r-ule.s Sl and S~ defined as follows : 

st = {ri ~ body(ri) 1 1 ~ i ~ t} 
S~={x~x I xEVar(P)U{ri, ... , 'I't}}. 

Lemma 4. Let P be a DL+-pmgram. Then: .JFP(Ph,Pb) = JUSTr(P*). 

Lemma 5. Given a set of positive logic p7vgrum.5 S over the same set of pmpo­
sitional variables ·v ar·, and a set F ~ V ar, deciding whether F is a minimal 
joint ftXpoinl of S is in r:o-NP. 

Theorem 3. The problems MJFPc and MJFP2 are Ef -complete. 

5 Joint Fixpoints and Stable Models 

In this section we give the translation from Logic Programming under the Joint 
Fixpoint Semantics to Logic Programming under Stable Model Semantics. First 
we need some prelirninary definitions and results. 

Definition 6. Let P be a proqrarn and let NI be a set of atoms in Vm·(P). We 
denote by (1\IJ]p the set {ap I a E M} U {af-, I a E Var(P) \M} U {sap I a EM}. 

Definition 7. LetP be a positive pmgrarn. We define thqn'Ogmm T(P) over the 
set of atoms Var(T(P)) ={ap I a E Var(P)}U{af-, I a E Var(P)}U{sap I a E 
Var(P)} U {failp} as the union of the sets of rules 51 , S2 and S 3 , defined as 
follows: 

S1 = {ap +-not ap I a E Var(P)} U {ap ~ not ap I a E Var·(P)} 

82 = {sa·p ~ b},, ... , brp I a +- b1, ... bn E P} 

Ss = {failp ~ not failp , sap, not ap I a E V ar(P) }U 
{failp ~not f ailp , ap, not sap I a E Var(P)}. 
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Lemma 6. Let P be apmgram. Then: SM(T(P)) =UFeFP(P)([FJp}. 

An immediate consequence of the above lemma is that there is a one-to-one 
correspondence between the set of fixpoints of a given program P and the set 
SM(F(P)) of stable models of the program F(P). 

Now suppose we have a set of positive programs P 1 .. .. , Pn over the same set 
of propositional variables. We find a program J (P1 , . .. • Pn) associated to t he set 
of programs P 1 , ... , Pn such that the stable modeb of J(P1 , ... , P,\) correspond 
to the joint fixpoints of P 1, • .. , Pn. J (Pt , . .. , P.,) is constructed by performing 
the union of all the programs F(Pi ), for 1 :;:; i :;:; n, with another program 
C(P1 , ••• , P,,) that we next define. Infor:mally, under stable model semantic:;, 
rules of programs F(P1), r(P2), ... , r(Pn) have the effect of generating all 
the fix points of P1, P2 , ... , Pn, respectively, whlle rules of C(P1 , .•. , Pn) select 
among Lhese all fixpoints that are simultaneously fixpoints of P1 , P21 ... 

1 
P,.. 

D efinit ion 8. Given a set of positive 7n·ograms P1 , ... , Pn over the same set of 
atomic proposition.s Var, C(P1 , ... , Pn ) is the program over Var' = Ut<i<n {ap, I 
(1 E Var} U {fail} defined as follows: --

C(Plt ... , Pn) = {!ail <- not fail , ap,, not api I 1 5. i :f: j 5. n }. 

Moreover, the program J(P1 1 ••• , Pn ) over U1~i~n V ar(F(P;)}U{fail} is defined 
as: 

J('Pl, ... I Pn) = r(Pt ) u .. . u r(Pn) u C('PJ, ... I 'Pn). 

The next theorem states t hat t here is a one-to-one correspondence between t he 
set of joint fix points of the programs P1 , . .• , Pn and the set of stable models of 
the program J(Pt , ... , Pn)· 

Theorem 4. Let P1 , .... Pn b~ positive logic programs over the same set of 
atomic propositions V ar. Then: 

SM(J(P1, ... , Pn)) = u 
FEJ F P(P1, ... ,'P,.) 

where J F P(P1 , ... , P.1) is the set of the joint ftXpoints of P t. ... , Pn· 

6 Conclusion and Future Work 

In this paper we have introduced a new model-theoretic semantics for defining 
compromises among de~ires and consents of agents represented by logic pro­
grams. Rather than joining the theories of different agents and considering mod­
els or fixpoints of a single joint logic program (po.o;sibly incorporating modalities), 
we advocated that the right approach is most likely to consider joint fixpoints 
of separate logic programs. To our best knowledge, the idea of using joint. fixed 
points of logic programs is new and has never been explored by others. We think 
that. t.bis is a. quite appealing idea, which uses existing concepts and machinery 
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in a diverse rendering. The effectiveness of our method was demonstrated on 
two small nontrivial examples. In this con text, we also described a new way of 
specifying requests and consents of agents by logic programs. A novel feature 
i:; the okay modality and its translation into a self-implication of an atom in a 
classical logic program. Our new semantics for describing requests and consents 
of mult iple agenl.s naturally induced us to study the computational properties of 
reasoning with joint fixed points and with minimal joint fixed points. We proved 
the ~;urprising result that determining whether two plain positive propositional 
logic programs have a joint .fixpoint is already NP complete. Translated into our 
agent.-compromil;e framework t his means that determining whether Lhere ex.isl.s 
a compromise between two agents whose requests and consents are formulated 
in the ::;implcst possible rule-based language (just definite propositional Horn 
clauses, without negation or disjunction or similar con:struct~;) is a hard problem. 
For those who agree that. our semanties can faithfully describe standpoints of 
agents, !.his NP hardness n:sult says something about determining compromil:;e:; 
in the real world. We also analyzed the complexity of creduluu:; and skeptical 
reasoning under the minimal joint fixpoint semantics. We think that our com­
plexity studies a.nd results are of independent interest, whether one agrees with 
our interpretation of joint fixpoints as compromises or not.. 
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