An Evolving Agent with EVOLP

J. J. Alferes', A. Brogi?, J. A. Leite', and L. M. Pereira'

! CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Universita di Pisa, Italy

Abstract. Logic programming has often been considered less than ad-
equate for modelling the dynamics of knowledge changing over time.
Evolving Logic Programs (EVOLP) has been recently proposed as a sim-
ple though quite powerful extension of logic programming, which allows
for modelling the dynamics of knowledge bases expressed by programs,
and illustrate its usage in modelling agents whose specifications may
dynamically change. From the syntactical point of view, evolving pro-
grams are just generalized logic programs (i.e. normal LPs plus default
negation in rule heads too), extended with (possibly nested) assertions,
whether in heads or bodies of rules. From the semantical point of view,
a model-theoretic characterization is offered of the possible evolutions of
such programs. These evolutions arise both from self (i.e. internal to the
agent) updating, and from external updating originating in the environ-
ment. In this paper we illustrate the usage and power of EVOLP, and
its ability to model agents’ specifications, by elaborating on variations
in the modelling of a Personal Assistant Agent for e-mail management.

1 Introduction

The agent paradigm, commonly implemented by means of imperative languages
mainly for reasons of efficiency, has recently increased its influence in the research
and development of computational logic based systems (see e.g. [9]).

While logic programming LP can be seen as a good representation language
for static knowledge, if we are to move to a more open and dynamic environment,
typical of the agency paradigm, we must consider ways and means of represent-
ing and integrating knowledge updates from external sources, but also inner
source knowledge updates (or self updates). In fact, an agent not only comprises
knowledge about each state, but also knowledge about the transitions between
states. The latter may represent the agent’s knowledge about the environment’s
evolution, coupled to its own behaviour and evolution.

To address this concern, the authors, with others, first introduced Dynamic
Logic Programming (DLP) [2]. There, they studied and defined the declarative
and operational semantics of sequences of logic programs (or dynamic logic pro-
grams). [5] addressed similar concerns. According to DLP, knowledge is conveyed
by a sequence of theories (encoded as generalized logic programs) representing
different states of the world. Each of the states may contain mutually contradic-
tory and overlapping information. The role of DLP is to take into account the

mutual relationships extant between different states to precisely determine the
semantics of the combined theory comprised of all individual theories and the
way they relate.

Now, since logic programs can describe well knowledge states and, we have
just mentioned above, also sequences of updating knowledge states, it’s only fit
that logic programs be also used to describe the transitions between knowledge
states. With this aim, recently we developed the language of Evolving Logic Pro-
grams (EVOLP) [1]. EVOLP generalizes LP to allow specification of a program’s
own evolution, in a single unified way, by permitting rules to indicate assertive
conclusions in the form of program rules. Such assertions, whenever they belong
to a model of the program P, can be employed to generate an updated ver-
sion of P. This process can then be iterated on the basis of the new program.
Whenever the program semantics affords several possible program models, evo-
lution branching will occur, and several evolution sequences are made possible.
This branching can be used to specify incomplete information about a situation.
Moreover, the ability of EVOLP to nest rule assertions within assertions allows
rule updates to be themselves updated down the line, conditional on each evo-
lution strand. The ability to include assertive literals in rule bodies allows for
looking ahead on some program changes and acting on that knowledge before
the changes occur. In all, EVOLP can adequately express the semantics resulting
from successive updates to logic programs, considered as incremental specifica-
tions of agents, and whose effect can be contextual. In contradistinction to other
approaches (viz. LUPS [3], EPI [4] and KABUL [7]), this is done by adding as
few as possible new constructs to classical LP, thus resulting in a simpler and
at once more general formulation of logic program updating, that runs closer to
traditional LP doctrine.

It is the goal of this paper to show that the attending formulation of EVOLP
provides a good firm formal basis in which to express, implement, and reason
about dynamic knowledge bases of evolving agents, and to show that it goes
beyond some of the limitations of other approaches. To do this, in the ensuing
section we briefly present the formal syntax and semantics of EVOLP. Imme-
diately afterwards we make our case by presenting a detailed and protracted
application example of EVOLP usage, employing it to define an e-mail Personal
Assistant Agent, whose executable specification evolves by means of external
and of internal dynamic updates, both of which can be made contingent on the
evolution context in which they occur. We end with a section comprising dis-
cussion, comparisons with related application work, open issues, and themes of
future developments.

2 Evolving logic programs

As mentioned in the Introduction, we are interested in a logic programming
language, EVOLP, that caters for the evolution of an agent’s knowledge, be it
caused by external events, or by internal requirements for change. Above all, we
desire to do so by adding as few new constructs to traditional LP as possible.

What is required to let logic programs evolve? For a start, one needs some
mechanism for letting older rules be supervened by more recent ones. That is, we
must include a mechanism for deletion of previous knowledge along the agent’s
knowledge evolution. This can be achieved by permitting negation not just in rule
bodies, as in normal logic programming, but in rule heads as well'. Moreover,
one needs a means to state that, under some conditions, some new rule or other
is to be added to the program. We do so in EVOLP simply by augmenting the
language with a reserved predicate assert/l, whose sole argument is itself a
full-blown rule, so that arbitrary nesting becomes possible. This predicate can
appear both as rule head (to impose internal assertions of rules) as well as in
rule bodies (to test for assertion of rules). Formally:

Definition 1. Let £ be any propositional language (not containing the predi-
cate assert/1). The extended language Lyssert s defined inductively as follows:
— All propositional atoms in L are propositional atoms in Lyssert; — If each
of Lo, ..., Ly is a literal in Lyssert (i-€. a propositional atom A or its default
negation not A), then Ly < Lq,...,L, is a generalized logic program rule over
Lassert; — If R is a rule over Lyssert then assert(R) is a propositional atom of
Lassert; — Nothing else is a propositional atom in Lyssert-

An evolving logic program over a language L is a (possibly infinite) set of
generalized logic program rules over Lygsert-

This language alone is enough to model the agent’s knowledge base, and to
cater within it for internal updating actions changing it. But self-evolution of a
knowledge base is not enough for our purposes. We also want the agent to be
aware of events that happen outside itself, and desire the possibility too of giving
the agent update “commands” for changing its specification. In other words, we
wish a language that allows for influence from the outside, where this influence
may be: observation of facts (or rules) that are perceived at some state; assertion
commands directly imparting the assertion of new rules on the evolving program.
Both can be represented as EVOLP rules: the former by rules without the assert
predicate in the head, and the latter by rules with it. Consequently, we shall
represent outside influence as a sequence of EVOLP rules:

Definition 2. Let P be an evolving program over the language L. An event
sequence over P is a sequence of evolving programs over L.

Given the syntax above, the semantics issue is that of, given an initial EVOLP
program and a sequence of EVOLP programs as events, to determine what is
true and what is false after each of those events. More precisely, the meaning
of a sequence of EVOLP programs is given by a set of evolution stable models,
each of which is a sequence of interpretations or states (I,...,I,). The basic
idea is that each evolution stable model describes some possible evolution of one
initial program after a given number n of evolution steps, given the events in the
sequence. Each evolution is represented by a sequence of programs (P, ..., P,),
each program corresponding to a knowledge state.

1 A well known extension to normal logic programs [8].

The primordial intuitions for the construction of these program sequences
are as follows: regarding head asserts, whenever the atom assert(Rule) belongs
to an interpretation in a sequence, i.e. belongs to a model according to the stable
model semantics of the current program, then Rule must belong to the program
in the next state; asserts in bodies are treated as any other predicate literals.

Definition 3. An evolution interpretation of length n of an evolving program

P over L is a finite sequence T = (I1,15,...,1I,) of sets of propositional atoms
of Lyssert- The evolution trace associated with an evolution interpretation T is
the sequence of programs (Py, Py, ..., P,) where:

Pi=P and P,={R | assert(R) € I,_1} for each 2 <i < n.

The sequences of programs are then treated as in DLP, where the most recent
rules are set in force, and previous rules are valid (by inertia) insofar as possible,
i.e. they are kept for as long as they do not conflict with more recent ones. In
DLP, default negation is treated as in stable models of normal [6] and generalized
programs [8]. Formally, a dynamic logic program is a sequence P; &...® P, (also
denoted @ P, where P is a set of generalized logic programs indexed by 1, ..., n),
and its semantic is determined by?:

Definition 4. Let @{P; : i € S} be a dynamic logic program over language L,
let s € S, and let M be a set of propositional atoms of L. Then:

Defaults(M)= {not A — . |AA — Body € P;(1 <i<s): M = Body}

Rejects(M) = {Lo < Body € P; | 3 not Lo « Body' € P;,i <j<s AM = Body'}
where A is an atom, not Ly denotes the complement w.r.t. default negation of
the literal Ly, and both Body and Body' are conjunctions of literals.

Definition 5. Let P = @{P; : i € S} be a dynamic logic program over language
L. A set M of propositional atoms of L is a stable model of P at state s € S iff:

M’ = least ({Uigs P — Rejects(M)] U DefaultS(M))

where M = M U {not. A | A & M}, and least(.) denotes the least model of the
definite program obtained from the argument program by replacing every default
negated literal not A by a new atom not A.

Moreover, the events received at each state must be added to the correspond-
ing program of the trace, before testing the stability condition of stable models
of the evolution interpretation.

Definition 6. An evolution interpretation of length n, (I, ..., I,), with evolu-
tion trace (Py, Pa, ..., P,), is an evolution stable model of P given (E1, ..., Ey),
with n < k, iff for every i (1 < i < n), I; is a stable model at state i of
PieP...o(PUE;).

Since various evolutions may exist for a given length, evolution stable models
alone do not determine a truth relation. But one such truth relation can be
defined, as usual, based on the intersection of models:

? For more details, the reader is referred to [2].

Definition 7. Let P be an EVOLP program and & be an event sequence of length
n, both over the language L. A set of propositional atoms M over Lyssert 1S @
Stable Model of P given & iff there exists an evolution stable model of P given
E with length n, where the last interpretation is M. We say that propositional
atom A of L is: true given & iff all stable models of P given £ have A; false
given & iff no stable model of P given £ has A; unknown given &£ otherwise.

For further details, motivation and properties of EVOLP the reader is referred
to [1]. An implementation is available at http://centria.fct.unl.pt/"jja/updates/

3 E-mail Agent

Forthwith, EVOLP is employed to specify several features of a Personal Assistant
agent for e-mail management, able to perform a few basic actions such as sending,
receiving, and deleting messages, as well as moving them between folders, and to
perform tasks such as filtering spam messages, storing messages in the appropri-
ate folders, sending automatic replies, notifying the user and/or automatically
forwarding specific messages, all of which dependant on user specified criteria.
Some existing commercial systems already provide basic mechanisms to specify
such tasks (e.g. SpamAgent, SpreadMsg, and SuperScout). If we expect the user
to specify once and for all a consistent set of policies that trigger those actions
then, such commercial systems would be all that is needed. But reality tells us
otherwise: one observes that the user, every now and then, will discover new
conditions under which incoming messages should be deleted, and under which
messages now being deleted should not. If we allow the user to specify both the
positive instances of such policies (e.g. should be deleted) and negative ones (e.g.
should not be deleted), soon the union of all such rules becomes inconsistent, and
we cannot expect the user to debug the set of rules so as to invalidate all the old
rules that should no longer be used due to more recent ones that countervene
them. We should allow the user to simply state whatever new is to be done, and
let the agent automatically determine which of the old rules may persist and
which not. We are not presupposing the user is contradictory, but just that he
has updated his profile, something reasonable. For example, suppose he is tired
of receiving spam messages advertising credit and tells the agent to delete all
incoming messages whose subject contains the word credit. Later he finds out
that important messages from his accountant are being deleted because the sub-
ject mentions credit. He should simply tell the agent not to delete such incoming
messages from his accountant, and the agent should automatically determine
that such messages are not to be deleted, in spite of the previous rule. But if we
just evaluate the union of all specified policies, we obtain a contradiction. Next
we show how EVOLP deals with these contradictions and automatically solves
them with clear and precise semantics.

It would be important for the personal e-mail assistant agent to allow the
user to specify tasks not as simple as just performing actions whenever some
conditions are met. Suppose one is organizing a conference and wants to auto-
mate part of the communication with referees and authors. Basic tasks include

automatic replies to authors whenever abstracts are submitted, etc. But more
complex tasks can be conceived that we wish the agent to take care of, such as:
waiting for messages from referees accepting to review a paper and, once the
message arrives, forwarding to him a message with the paper if it has arrived,
otherwise waiting till it arrives and forwarding it then; having different policies
to deal with papers before and after the deadline; permitting the specification
of extensions to the deadline on a case by case manner, and dealing with each of
those papers differently; updating the initial specification for those policies; etc.

Throughout the remainder of this Section, we illustrate some features of
EVOLP for these tasks. Instead of exploring all the basic features of the agent,
many of which can be found in agents of the kind in the literature, we concen-
trate on those features directly concerned with the evolving specification of the
agent, namely the representation of the dynamic user profile, and of the dynamic
specification of its actions and their effects. The way to specify other common
simple tasks can easily be inferred from the exposition. We also abstract from
the way actions are actually executed. Often we address some of the issues in
what does not seem like the most natural way, solely with the purpose of illus-
trating features of EVOLP, because it is difficult to show all of its capabilities
in a single example. For lack of space, we do not show wholly the stable models,
but rather single out their main characteristics for our purposes.

We start with a program that contains the initial specification of our agent.
It consists of the rules m through 719, i.e. P = {(r1), (ra),..., (ri0)}-

r1 : time(l) «— r9 1 assert(time(T + 1)) « time(T)
r3 : assert(not time(T)) «— time(T)

rq : assert(msg(M, F, S, B,T)) <« newmsg(M, F, S, B), time(T), notdelete(M)
r5 : assert(in(M, inbox)) «— newmsg(M, _, _, _), not move(M, F), not delete(M)
re : assert(in(M, Fy,)) « newmsg(M, _, _, _), move(M, Fy,)

r7 :assert(in(M, Fi,)) «— move(M, Firom, Fio),in(M, Ffrom)

rg : assert(not in(M, Firom)) < move(M, From, Fio), notin(M, Fy,)

rg : assert(notin(M, F)) «— delete(M),in(M, F)

rio : assert(sent(To, S, B, T)) « send(To, S, B), time(T)

The first three encode a clock which for now will be used to time-stamp all in-
coming messages. Note such time-stamping is not really required, but we thought
it useful to show how a clock can be encoded in EVOLP. Rule r4 specifies that
all incoming messages, represented by newmsg(Msgld, From, Subject, Body),
if not specified to be deleted, represented by literal not delete(M sgld), should be
time-stamped and asserted as a fact msg(M sgld, From, Subject, Body, Time).
Rule 75 specifies that all incoming messages, if not specified to be deleted, and
not specified to be moved to a folder represented by not move(Msgld, Folder),
should be stored in the folder inbox. We use in(M sgld, Folder) to represent that
the message Msgld is in folder Folder. Rule r¢ specifies the effect of moving an
incoming message to a specific folder. Rule r7 and rg encode the effect of moving
a message between folders, represented by move(Msgld, Folder from, Folders,).
Note no problem exists with specifying that a message is to be moved between
the same folder. Rule rg specifies the effect of the action delete, represented by

delete(M sgld). This action causes the message to be removed from its current
folder. Finally, rule r1y encodes that sending a message, represented by the atom
send(To, Sbject, Body), causes the message to be sent, hereby represented by the
assertion of the fact sent(To, Subject, Body, Time).

At this initial state, the stable model only contains time(1). With this ini-
tial specification, since we do not yet have any rules to specify which incoming
messages are to be deleted or moved, every message received is moved to folder
inbox. Also, at every state transition, the clock increases its value. Suppose we
receive an update containing three messages i.e. an event F; with the facts:

newmsg(1l,'a@a’ ‘credit’,‘some spam text’)

newmsg(2,‘accountant@c’ ‘hello’,‘some text’)

newmsg(3,'bQd’ ‘free credit’,'more spam’)
After this update, the stable model contains:

assert(msg(1l,‘a@a’ ‘credit’,‘'some spam text’, 1)), assert(in(1, inbox))

assert(msg(2,‘accountant@c’,‘hello’,‘some text’, 1)), assert(in(2, inbox))

assert(msg(3,'b@Qd’ ‘free credit’,‘more spam’, 1)), assert(in(3, inbox))
time(1), assert(not time(1)), assert(time(2))
With this, we construct P, containing the facts:
msg(1l,‘a@a’ ‘credit’,‘'some spam text’, 1), in(1, inbox), not time(1)
msg(2,‘accountant@c’,‘hello’,‘some text’, 1), in(2, inbox)
msg(3,'bQd’,‘free credit’,'more spam’, 1), in(3, inbox), time(2)
indicating that the agent’s knowledge base has been updated so as to store
all messages, properly time-stamped, in folder inboxr. Moreover the clock was
updated to its new value.

At this point, the user becomes upset with all the spam messages being re-
ceived and decides to start deleting them on arrival. For this he updates the agent
by asserting a general rule specifying that spam messages should be deleted, en-
coded as the assertion of rule 711, and he also updates the agent with a definition
of what should be considered a spam message, in this case those whose subject
contains the word ‘credit’, encoded by the assertion of rule 7.

r11 : delete(M) «— newmsg(M, F, S, B), spam(F, S, B)

r12 : spam(F, S, B) « contains(S,‘credit’)
Throughout, consider the literal contains(S,T) true whenever T is contained
in S, whose specification we omit for brevity. The assertion of these two rules,
together with an update so as to delete messages 1 and 3, constitutes event Fs:

Es = {assert({ri1)), assert({r12)), delete(1), delete(3) }
After this update, the stable model contains:

assert((ri1)), assert({riz)), delete(1), delete(3), assert(not in(1,inbozx))
assert(not in(3, inbox)), assert(time(3)), assert(not time(2))
together with those propositions of the form msg/5, time/1, in/2, representing
the existing messages, their locations, and the current internal time®. From this

3 From now on, we omit all those propositions and assertions concerning the clock,
unless relevant for the presentation.

model we construct program Ps, which contains 711, 712, together with the facts
time(3), not time(2), notin(1, inbox) and not in(3, inbox).
Suppose we receive an update F3 containing the three messages:

newmsg(4,'dQa’ ‘free credit card’,’spam spam spam’)
newmsg(5,‘accountant@c’,‘credit’,‘got your credit’)
newmsg(6,‘girlfriend@d’,*hi’,‘theater tonight?’)

After this update, the stable model contains:

spam(F ‘free credit card’, B), spam(F,‘credit’, B), delete(4), delete(5),
assert(msg(6,‘girlfriend@d’,*hi’,‘theater tonight?’, 3)), assert(in(3, inbox))

Since messages 4 and 5 are considered spam messages, they are both set for dele-
tion and thus are not asserted. Only message 6 is asserted. From this model we
construct the program P, which contains facts not time(3), in(6, inbox), time(4),
and msg(6,‘girlfriend@d’ ‘hi’ ‘theater tonight?’, 3).

Next we receive an update containing a single message i.e. Ey with?*:

newmsg(7,‘accountant@c’ ‘are you there?’‘...%)

This message made the user aware that previous messages from his accoun-
tant had been deleted as spam. The user then decides to update the definition
of spam, stating that messages from his accountant are not spam. He does this
by asserting rule r13 (below). Note this rule is contradictory with rule ris, for
messages from the accountant with subject containing the word ‘credit’. But
EVOLP automatically detects such contradictions and removes them by taking
the newer rule to be an update of any previously existing ones, and we thus
expect such messages not to be deleted. Now the user is appointed conference
chair and decides to program the agent to perform some attending tasks. Hence-
forth, messages with the subject ‘abstract’ should be moved to folder abstracts,
encoded by rule 714, those containing the word ‘cfp’ in their subjects should be
moved to folder cfp (r15). Furthermore, as the user is accustomed to only look-
ing at his inbox folder, he wishes to be notified whenever an incoming message is
immediately stored at a folder other than inbox. This is accomplished with rule
16, which renders noti fy(M) true in such cases. Mark that notify/1 represents
an action with no internal effect on the agent’s knowledge base. The agent must
also send a message acknowledging receipt of every abstract (ri7). And since
the user will be away from his computer, he decides to forward urgent mail to
his new temporary address. This could be accomplished by simply stating that
those messages should be sent to his new address. But he decides to create a new
internal action, represented by forward(Msgld,To), whose effect is to forward
the newly incoming message Msgld to the address To, thus making it easier
to specify future forwarding options. The specification of this action is achieved
by asserting rule r1g. Then, based on this action, he can specify that all urgent
messages be forwarded to his new address, by asserting rule rog. Finally, the
user realizes that the messages that have been deleted are not being effectively
deleted, but rather only removed from their folders, i.e. msg(M, F, S, B,T) is

4 At this state we omit the model and update.

still true, except that there is no in(M, _) that is true. He then decides to create
another internal action, purge, whose effect is that of making false all those mes-
sages that have been previously removed from all folders by the action delete.
The specification of this action is obtained by asserting rule roq.

r13 : not spam(F, S, B) « contains(F,‘accountant’)
r1a : move(M, abstracts) «— newmsg(M, F, S, B), contains(S, ‘abstract’)
r15 : move(M, cfp) « newmsg(M, F, S, B), contains(S,‘cfp’)
r16 : notify(M) — newmsg(M, F, S, B),
not assert(in(M, inbox)), assert(in(M, Fldr))
ri7 : send(From, S,‘Thanks’) < newmsg(M, F, S, B), contains(S,‘abstract’)
rig : send(To, S, B) « forward(M,To),newmsg(M, F, S, B)
ri9 : forward(M,'b@Qdomain’) «— newmsg(M, _,‘urgent’, _)
roo : assert(not msg(M, F, S, B,T)) < purge,msg(M, F, S, B,T), notin(M, _)

The assertion of all these rules is event F5 = {assert({ri3)), assert({ri4)),
assert((ri5)), assert({rig)), assert({ri7)), assert({ris)), assert({rig)),
assert((ra0))}

At the subsequent update the agent receives more messages, performs a
purge, moves message 6 to the private folder, and deletes message 6, encoded by
the following facts belonging to Fg:

newmsg(9,‘a2@e’,‘abstract’,‘abs...”), newmsg(10,'a3@e’‘abstract’,‘abs...”)

newmsg(13,‘accountant@c’ ‘fwd:credit’,‘...”), newmsg(11,’xQd’ ‘urgent’,‘...”)
move(6, inbox, private), delete(6), purge, newmsg(8,'al@e’ ‘abstract’,‘abs...”)
newmsg(12,‘accountant@c’, ‘fwd:credit’‘...”)

After this update, the stable model contains, for messages 1 and 3, as a result
of the purge, assert(not msg(M, F, S, B,T)); assert(in(M,abstracts)) for mes-
sages 8, 9 and 10, forward(11,'b@domain’) and the corresponding send action,
i.e. send(‘b@domain’,‘urgent’,‘...”), and, concerning message 6, the stable model
contains assert(in(6, private)) and delete(6). There are also notifications for
messages 8, 9, 10 and 14. Next the user decides that whenever a message is both
deleted and moved, the deletion action prevails, i.e. it should not be asserted
into the folder specified by the move action. This is encoded by the assertion of
rule 791 (below). Furthermore, the user decides to update his spam rules to avoid
all the spam his accountant has been forwarding to him (r92). Finally, because
he wants the agent to deal with communication with the referees, he sets up the
assignments between referees and submitted papers (rog — 725). The rules and
event Fr are:

ro1 1 not assert(in(M, Fi,)) < move(M, Ftrom, Fio), delete(M)

rog : spam(F, S, B) « contains(S,‘credit’), contains(S, Fwd’)

rog : assign(‘paperl’,‘ref2@b’) ro4 : assign(‘paper?’ ‘ref2@Qhb’)
ro5 ¢ assign(‘paper?2’ ‘ref3Qc’) ro6 : assign(‘paperd’ ‘ref3Qc’)
ro7 : assign(‘paper3’,‘refl@a’) rog : assign(‘paperl’ ‘refl@a’)

assert((ra1)), assert({raa)), assert((ras)), assert({ras))
assert({ras)), assert({rag)), assert({raz)), assert({rag))

After all these rules have been asserted, and at the subsequent update, the
agent receives a spam message from the accountant, performs a move and a
delete of message 12 to test if the new rule is working, and sends messages to
the referees inviting them to review the corresponding papers, encoded by the
following facts and rules that belong to Eg:

newmsg(15,‘accountant@c’ ‘fwd:credit’,‘...”), move(12, inbozx, folderl)
delete(12) send(R, PId,‘invitation to review’) « assign(PId, R)

At this point, we invite the reader to check that message 15 was rejected, and
that message 12 was indeed deleted. It is important to note that the messages
to the referees are only sent once. This is so because the rule belonging to Eyg is
not an assertion and thus never becomes part of the agent’s knowledge base. It
is only used to determine the stable model at this state, and never used again.

Subsequently the user decides to specify the way the agent should deal with
communication with authors and reviewers. Forthwith, we show how some of
these tasks could be programmed. Upon receipt of a message from a reviewer
accepting to review a given paper, the paper should be sent to the referee once it
arrives. This could be specified by rule 59 (below) which specifies the assertion of
a rule that sends the paper to the referee, but this assertion should only take place
after the referee accepts the task. If the paper has already been received when the
reviewer accepts the task, then it should be sent immediately (rsg). Of course,
if papers are received after some deadline, and unless some extension was given
for a particular paper, then they should be rejected and the author so notified.
This is encoded by rules r3; and r3o which are asserted when the deadline is
reached, even though it has not been set yet. Rule r3; sends a message to the
author while rule r35 prevents the paper from being sent to the referee. Finally,
the user asserts two rules to deal with deadline extensions on a paper by paper
basis. Whenever the user includes an event of the form dline(PId, Dur) in an
update, he is giving an extension of the deadline concerning paper PId and with
duration Dur. This immediately causes ext(PId) to be asserted, preventing the
paper from being rejected. Concurrently, by means of rule 734, a rule is asserted
that will render ext(PId) false once the deadline plus the extension is reached,
after which the paper is rejected.

rog : assert(send(R, S, B) «— newmsg(M, F, S, B), contains(S, PId),

assign(PId,R))
— newmsg(M, R, PId, B), contains(B,‘accept’)

r30 : send(R, PId, B) «— newmsg(M, R, PId, B1), contains(Bi,‘accept’),
msg(Mn, F, PId,B,T)

r31 : assert(send(F, S, ‘toolate’) «— newmsg(M, F, S, B), contains(S, PId),
not ext(PId))
— time(T), deadline(T")

r32 @ assert(not send(Referee, S, B) « newmsg(M, F, S, B), contains(S, PId),
not ext(PId))
— time(T), deadline(T)

r33 : assert(ext(PId)) « dline(PId, D)
r34 : assert(assert(not ext(PId)) « time(D + T), deadline(T)) « dline(PId, D)

The event that encodes this update is: Eq = {assert({rag)), assert({rso)),
assert({rs1)), assert({(rsa)), assert({rss)), assert((rz4))}

Subsequently the user sets the deadline by asserting the fact deadline(14)°,
i.e. the event Eq(contains the fact assert(deadline(14)).

The remainder of the story goes as follows: at event E71; the agent receives
both acceptance messages from referee 1; at event Ei5 it receives paper 2; the
user grants deadline extensions of two time units to papers 1 and 3, encoded in
event Fi3; at event Fy4 it receives the acceptance messages from referee 2; at
event Fi5, i.e. after the deadline but before the extension, it receives paper 1; at
event Fig it receives the acceptance messages from referee 3; at event Ey7, i.e.
after the extension has expired, it receives paper 3. Lack of space prevents us
from elaborating further on what happens after all these events, but we invite
the reader to check that: after event E14 paper 2 is sent to referee 2; after event
FE5 paper 1 is sent both to referees 1 and 2; after event Ei4 paper 2 is sent
to referee 3; since paper 3 arrives after the deadline extension it is rejected, a
message is sent to the author, and the paper is not sent to any referee.

B newmsg(16,‘refl@a’ ‘paperl’,‘accept’), |
7\ newmsg(17,‘refl@a’ ‘paper3’ ‘accept’) [’

E15 = {newmsg(18,‘a2@e’‘paper2’,‘the paper’)} ;
Ey3 = {dline(‘paperd’, 2), dline(‘paperl’, 2)} ;

B newmsg(19,‘ref2@Qb’ ‘paperl’,‘accept’), |
47 newmsg(20,‘ref2@b’ ‘paper2’,‘accept’) |’

E15 = {newmsg(21,'al@e’,‘paper]’ ‘the paper’)} ;

o newmsg(22,‘ref3Qc’ ‘paper2’ ‘accept’),
167\ newmsg(23,‘ref3Qc’ ‘paper3’,‘accept’)

E17 = {newmsg(24,‘a3@e’‘paper3d’,‘the paper’) }

4 Discussion and Conclusions

Though permitted by EVOLP, the example does not involve any branching of
evolutions, i.e. there is always a single stable model of the program, given any
of the example’s events. As in stable models of normal programs, non-stratified
rules can be used to obtain various models. Here, non-stratified rules for asser-
tions can be used to model alternative updates to the agent’s knowledge base,
e.g. for stating that, under certain conditions, either move a message to a folder
or delete it, but not both. Non-stratification can also be used to model un-
certainty in the external observations. In both these cases, EVOLP semantics
provides several evolution stable models, upon which reasoning can be made,
concerning what happens in case one or other action is chosen. On the other
hand, by having various models, EVOLP can no longer be used to actually per-
form the actions, unless some mechanism for selecting models is introduced. For

5 Dealing with the synchronisation of external and internal times is outside the scope
of this paper. Here, the deadline refers to the agent’s internal time.

(static) logic programs, this issue of selecting among stable models has already
been extensively studied: either by defining more skeptical semantic that always
provide a unique model or by preferring among stable models based on some
priority ordering on rules. The introduction of such mechanisms in EVOLP too
is the subject of current and future work by the authors.

Another issue, not illustrated in the example, and not (yet) addressed by
EVOLP, is that of synchronisation of external and internal times. In the example,
this problem does not even appear, until the moment where we want to set
the deadline. For expressing the deadline in terms of the internal time we can
assume, for example, that an event is given to the agent (albeit empty) after
every fixed amount of external time (say 5 minutes). This way, we could express
the external time and date of the deadline as the time-stamp of an internal
state. Another possibility would be to assume that every event comes with a
fact etime(T) stating at which moment T' (in term of external time) the event
occurred, and then compare the last T' with the deadline. For this example, both
these solutions would be enough, since synchronisation is not a crucial issue. But
in general, synchronisation is an issue that deserves further attention, and is the
subject of future work by the authors.

A large number of software products is nowadays available to perform email
monitoring and filtering (e.g. Spam Agent , SpreadMsg, SuperScout). Lack of
space prevents us from detailing here these and other (out of many) email mon-
itoring and filtering agents available. It is worth observing however that, to
the best of our knowledge, none of the available agents enjoys the ability of
autonomously and dynamically updating its own filtering policies in a way as
general as the EVOLP specifications illustrated in the present work.

Acknowledgments: This work was partly supported by POSI/SRI/40598/2001 project
FLUX. The second author was partially supported by the IST-2001-32530 project.

References

1. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In
JELIA’02, volume 2424 of LNAI Springer, 2002.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, T. Przymusinski. Dynamic
updates of non-monotonic knowledge bases. Journal of L.P., 45(1-3), 2000.

3. J. J. Alferes, L. M. Pereira, H. Przymusinska, T. Przymusinski. LUPS : A language
for updating logic programs. Artificial Intelligence, 138(1-2), 2002.

4. T. Eiter, M. Fink, G. Sabbatini, and H Tompits. A framework for declarative update
specifications in logic programs. In IJCAI’01. Morgan-Kaufmann, 2001.

5. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2002.

6. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In ICLP’88.

MIT Press, 1988.

J. A. Leite. Evolving Knowledge Bases. 10S Press, 2003.

V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (prelim-

inary report). In KR’92. Morgan-Kaufmann, 1992.

9. V. S. Subrahmanian, Piero Bonatti, Jiirgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press, 2000.

© N

