
Solving Hard Disjunctive Logic Programs Faster
(Sometimes)

Gerald Pfeifer

Institut f. Informationssysteme, TU Wien
Favoritenstr. 9-11, A-1040 Wien, Austria

gerald@pfeifer.com

Abstract. Disjunctive Logic Programming (DLP) under the consistent answer
set semantics is an advanced formalism for knowledge representation and rea-
soning. It is, under widely believed assumptions, strictly more expressive than
normal (disjunction-free) logic programming, whose expressiveness is limited to
properties decidable in NP.
However, this higher expressiveness comes at a computational cost, and while
there are now several efficient systems for normal logic programming under the
answer set semantics, we are only aware of two serious implementations for the
full, disjunctive case.
In this paper we investigate a novel technique to couple two main modules usually
employed for the implementation of a DLP system more tightly: a model gener-
ator (which generates model candidates using a backtracking procedure) and a
model checker (which verifies whether such a candidate indeed is an answer set).
Instead of using the model checker only as a boolean oracle, in our approach,
for every failed check, the model checker also returns a so-called unfounded set.
Intuitively, this set provides a diagnosis why the model candidate is not an an-
swer set, and the generator employs this knowledge to backtrack until the set is
no longer unfounded, which is vastly more efficient than employing full-fledged
model checks to control backtracking.
We implemented this approach in DLV, the leading implementation of DLP ac-
cording to recent comparisons, and experiments on hard benchmark instances
indeed show a significant speedup.

1 Introduction

Disjunctive Logic Programming (DLP) without function symbols under the consistent
answer set semantics [GL91], also called Answer Set Programming, has slowly but
steadily gained popularity since its inceptions in the early nineties of the last century
and now serves as an advanced formalism for knowledge representation and reasoning
in areas such as planning [DNK97,EFL+03,DKN02], software configuration, model
checking, and advanced deductive database applications that involve complex knowl-
edge manipulations on large databases at CERN; see [JNS+03,LPF+02] for further
references.

There are a number of efficient implementations for the normal (non-disjunctive)
case, which include Smodels [Sim96,SNS02], DLV [FP96,LPF+02], and

227

ASSAT [Zha02,LZ02] as well as Cmodels which is applicable on a subset of the lan-
guage, so-called tight programs [Bab02].

In the disjunctive case, on the other hand, DLV used to be the only serious sys-
tem (apart from proof-of-concept research prototypes) until GnT arrived at the scene
[JNSY00], though recent studies still indicate DLV having an edge performance-wise
[JNS+03,LPF+02].

Originally, few applications really required the higher expressivity of DLP which
allows to express every property of finite structures decidable in the complexity class
ΣP

2 (= NPNP, versus NP for normal logic programming, which means that under
widely believed assumptions DLP is strictly more expressive [EGM97]).

However, the use of DLP has been changing recently: First, disjunction also al-
lows for a more natural representation of problems not requiring the higher expressivity
(and in fact DLV, for example, detects such cases and avoids the overhead required for
harder instances). And second, several applications from domains such as planning have
been suggested and are under implementation [EFL+03,LRS01], which do require the
full expressive power of DLP; having an efficient implementation of the full language
is paramount for these.

In this paper, we provide a description of the intricate interaction of two main mod-
ules of DLV, the model generator and the model checker, and we describe novel opti-
mization techniques related to this interaction that we implemented as part of the latest
release of DLV.

Usually, for example in the implementations of DLV and GnT, a model generator
incrementally constructs model candidates using a backtracking procedure, and a model
checker then verifies whether these candidates indeed are answer sets.

One optimization, implemented in GnT and DLV and first described in [JNSY00],
is to perform partial model checks after a failed regular model check and backtrack until
the (increasingly smaller) partial interpretation passes such a partial check. In this paper
we explore the possibility to use the model checker not just as a boolean oracle, but
also let it return a so-called unfounded set. Intuitively, this set provides a diagnosis why
the model candidate is not an answer set, and the generator can employ this knowledge
during backtracking to avoid the more costly full partial model checks mentioned above
in many cases.

We implemented and refined this novel approach, and indeed our experimentation
on hard instances of QBF, a ΣP

2 -complete problem, shows a very nice speed-up.

2 Disjunctive Logic Programming

In this section we briefly introduce (function-free) Disjunctive Logic Programming
(DLP) under the consistent answer set semantics, provide a high-level overview of the
implementation of DLV, and finally review previous results on model checking. For
further background we refer to [GL91,EGM97,Bar02,LPF+02].

2.1 Syntax

A variable or constant is a term. An atom is of the form p(t1, ..., tn), where p is a
predicate of arity n ≥ 0 and t1, ..., tn are terms. A classical literal is an atom a or

228

a classically negated atom ¬a. A negation as failure literal (short literal) is either a
positive literal c or a negative literal not c, where c is a classical literal.

A (disjunctive) rule r is a clause of the form

a1 ∨ · · · ∨ an ← b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ · · · ∧ not bm. n ≥ 1, m ≥ 0

where a1, · · · , an, b1, · · · , bm are classical literals and r needs to be safe, i.e., each vari-
able occurring in r must appear in one of the positive body literals b1, · · · , bk as well.
The disjunction a1 ∨ · · · ∨ an is the head of r, while the conjunction b1 ∧ . . . ∧ bk ∧
not bk+1 ∧ . . . ∧ not bm is the body of r.

We denote by H(r) the set {a1, . . . , an} of the head literals, and by B(r) the set
{b1, . . . , bk, not bk+1, . . . , not bm} of the body literals. B+(r) (resp., B−(r)) denotes
the set of classical literals occurring positively (resp., negatively) in B(r): B+(r) =
{b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}.

Constraints are rules with an empty head (n = 0) which we use as syntactic sugaring
equivalent to a rule f ← b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ · · · ∧ not bm ∧ not f for some new
propositional (i.e., nullary) atom f .

A program is a finite set of rules and constraints. Anot-free (resp., ∨-free) program
is called positive (resp., normal). An atom, a literal, a rule, a constraint, or a program,
resp., is ground if it does not contain any variables.

A finite ground program is also calledpropositional, and in the rest of this paper
we will focus on such programs, for the process of computing the ground equivalent of
a program with variables is orthogonal to the issues at hand and has been the topic of
separate research, see [SNS02,Syr02,ELM+98], for example.

2.2 Semantics

Before we can introduce the answer set semantics (also called stable model semantics)
for disjunctive logic programs, we need a few prerequisites.

For any program P , let the Herbrand Universe UP be the set of all constants ap-
pearing in P . In case no such constant exists, an arbitrary constant ψ is added to UP .
Furthermore, let the Herbrand Literal Base BP be the set of all ground (classical) liter-
als constructible from the predicate symbols appearing in P and the constants of UP .

For any rule r, the Ground Instantiation Ground(r) denotes the set of rules obtained
by applying all possible substitutions σ from the variables in r to elements of UP .
For any program P , Ground(P) denotes the set

⋃
r∈P Ground(r). For propositional

programs, we trivially have that P = Ground(P) holds.
Following [Lif96], we define theAnswer Sets of a program P in two steps, using the

ground instantiation Ground(P): first we define the answer sets of positive programs;
then we give a reduction of programs containing negation as failure to positive ones and
use that to define answer sets of arbitrary programs.

Step 1: A (total) interpretation I is a set of ground classical literals, i.e., I ⊆ BP
w.r.t. a programP . A consistent interpretationX ⊆ BP is called closed under a positive
program P , if, for every r ∈ Ground(P), H(r) ∩ X 6= ∅ whenever B(r) ⊆ X . An

229

interpretation X is an answer set for a positive program P , if it is minimal (under set
inclusion) among all interpretations that are closed under P .1

Example 1. The positive program P1 = {a ∨ ¬b ∨ c.} has the answer sets {a}, {¬b},
and {c}. Its extension P2 = {a ∨ ¬b ∨ c., ← a.} has the answer sets {¬b} and {c}.
Finally, P3 = P2 ∪ {¬b← c., c← ¬b.} has the single answer set {¬b, c}. 2

Step 2: The reduct or Gelfond-Lifschitz transform of a ground program P w.r.t. a set
X ⊆ BP is the positive ground program PX , obtained from P by

1. deleting all rules r ∈ P for which B−(r) ∩X 6= ∅ holds;
2. deleting the negative body from the remaining rules.

Finally, an answer set of a (non-ground) program P is a set X ⊆ BP such that X
is an answer set of Ground(P)X .

Example 2. Given the general program P4 = {a ∨ ¬b← c., ¬b← not a, not c.,
a ∨ c← not ¬b.} and I = {¬b}, the reduct PI4 is {a ∨ ¬b← c., ¬b.}. It is easy
to see that I is an answer set of PI4 , and thus it is also an answer set of P4.

Now consider J = {a}. The reduct PJ4 is {a ∨ ¬b← c., a ∨ c.}, and we can easily
verify that J is an answer set of PJ4 , so it is also an answer set of P4.

If, on the other hand, we take K = {c}, the reduct PK4 is equal to PJ4 , but K is
not an answer set of PK4 : for r = a ∨ ¬b ← c, the condition B(r) ⊆ K holds, but
H(r) ∩K 6= ∅ does not. Indeed, I and J are the only answer sets of P4. 2

2.3 Answer Set Computation

In Figure 1 we provide a high-level description of the backtracking model generating
procedure of the DLV system, which is similar to the one of GnT and the Davis-Putnam
procedures commonly employed by SAT solvers [DP60].

For simplicity, this description assumes that the program P as well as auxiliary data
structures are globally accessible, and it omits the processes of parsing, computing a
suitable ground version of the (possibly) non-ground input, and output.

The computation is started by invoking ModelGenerator() with the empty three-
valued interpretation where every classical literal in BP is set to undefined.2 If P has
an answer set which is a superset of I , ModelGenerator() returns true and sets I to this
answer set; it returns false otherwise.

First the function DetCons() computes the deterministic consequences derivable
from P and I; it returns false if this results in inconsistency, in which case also Model-
Generator() backtracks and returns false. If no inconsistency occurred, and no literal in
I is left undefined, we have found a model candidate and invoke the model checker to

1 Note that we only consider consistent answer sets, while in [GL91] also the inconsistent set of
all possible literals can be a valid answer set.

2 In case of a three-valued interpretation every classical literal in BP is either true, false, or
undefined. If a literal assumes more than one of these truth values, the interpretation is incon-
sistent.

230

function ModelGenerator(var I : 3-Valued-Interpretation) : bool;
begin

if not DetCons(I) then return false;
if “no atom is undefined inI” then

return IsAnswerSet(I);
Select an undefined atomA using heuristics;
if ModelGenerator(I ∪ {A}) then

return true;
else

return ModelGenerator(I ∪ {not A});
end function ;

Fig. 1. Answer Set Computation

determine whether this is indeed an answer set. Else we choose one of the undefined lit-
erals, assume it true and recurse; in case this does not lead to an answer set, we assume
the complement of that literal true (that is, we assume the literal itself false) and recurse
as well. This proceeds until we either encounter an answer set or we have exhausted the
entire search space.

We can easily see that there are three sources of complexity here in addition to the
backtracking search itself: DetCons(), choosing which undefined atom to select, and the
model check performed by IsAnswerSet().

By means of suitable data structures based on work by Dowling and Gallier [DG84],
DLV performs DetCons() in linear time [CFLP02], so the heuristics which select an
undefined atomA and the implementation of IsAnswerSet() remain paramount for per-
formance. [SNS02] and [FLP01] provide more details on heuristics for the normal and
disjunctive cases, respectively, and [KLP03] provides an in-depth description of the
model checker of the DLV system.

2.4 Model Checking

In the following we review some previous results on model checking [KLP03,LRS97]
and then proceed with improving upon the basic algorithm described in Section 2.3.

The crucial concept for model checking in DLV is the notion of unfounded sets,
which better lends itself for implementation than the original definition of answer sets.

Definition 1. (based on Definition 3.1 in [LRS97] and [KLP03]) LetI be a total inter-
pretation for a program P . A set X ⊆ BP of ground classical literals is an unfounded
set for P w.r.t. I if, for each rule r ∈ Ground(P) such that X ∩H(r) 6= ∅, at least one
of the following conditions holds:

C1. (B+(r) 6⊆ I) ∨ (B−(r) ∩ I 6= ∅), that is, the body is false w.r.t. I .
C2. B+(r) ∩X 6= ∅, that is, some positive body literal belongs to X .
C3. (H(r)−X) ∩ I 6= ∅, that is, an atom in the head, distinct from the elements in X ,

is true w.r.t. I .

If I is a partial interpretations, we first remove all literals which are undefined inI
from P , and then proceed analogously to the total case above.

231

An interpretation I for a program P is called unfounded-free if and only if no non-
empty subset of I is an unfounded set for P w.r.t. I . 2

Intuitively, the presence of an unfounded set X ⊆ I w.r.t. a model I of P indicates
that I is not an answer set, because it is not minimal and some of its elements can be
removed such that I still remains a model. Formally, this can be stated as follows:

Proposition 1. (Theorem 4.6 in [LRS97]) Let I be a model for a program P . I is an
answer set of P if and only if it is unfounded-free. 2

Example 3. Consider P2 from Example 1, which has three models: {¬b}, {c}, and
{¬b, c}. The first two are trivially unfounded-free, for they do not have any non-empty
proper subset and are not unfounded sets themselves, so both are in fact answer sets.
{¬b, c}, on the other hand, contains two unfounded sets, namely {¬b} and {c}, and is
therefore not an answer set.

In general, checking whether a model I for P is an answer set is a co-NP-complete
task, and DLV solves it by means of a translation of P and I to a satisfiability (SAT)
problem which is unsatisfiable if and only if I is unfounded-free (and therefore an
answer set). If we consider the resulting SAT instance not as a decision problem, but
as a functional problem, its solutions are the unfounded sets for P w.r.t. I . For further
details we refer to [KLP03].

3 Model Generation and Checking Interplay

As mentioned before, both GnT and DLV implement an optimization first described
in [JNSY00], where once a (total) model check fails, we backtrack and perform partial
model checks during backtracking until we reach a partial model (a 3-valued interpre-
tation) which passes such a partial check, or the root of the search tree.

To that end, we add a new global flag which, when set to “check failed”, indi-
cates that we are in this special backtracking mode. And we add a function IsAnswer-
Set Partial() which is similar to IsAnswerSet(), but ignores undefined literals occurring
in rules (and constraints). That way it returns true if and only if I contains an unfounded
set that will remain unfounded for every possible totalization of I , which allows us to
continue backtracking, confident that there cannot be any solution left in that part of the
search tree.

The full, updated algorithm is depicted in Figure 2.

We improve upon this algorithm by further exploiting the results from Section 2.4
and a simple, but momentous, observation: when performing partial model checks dur-
ing backtracking, the unfounded set internally computed by IsAnswerSet Partial() will
often be the same as the one originally found by IsAnswerSet().

Now we know that checking whether a set of classical literals ufset is unfounded
w.r.t. a program P and a (total or partial) interpretation I can be done in linear time.3

3 This directly follows from Definition 1 under the assumption that checking whether a literal is
contained in ufset and whether it is true in I can be done in O(1), which is the case for DLV.

232

var state : { normal, check failed } := normal;

function ModelGenerator(var I : 3-Valued-Interpretation) : bool;
begin

if not DetCons(I) then return false;
if “no atom is undefined inI” then

if not IsAnswerSet(I) then
state:=check failed; return false;

else
return true;

Select an undefined atomA using heuristics;
if ModelGenerator(I ∪ {A}) then

return true;
else

if state = check failed then
if not IsAnswerSet Partial(I) then

return false;
else

state:=normal;
return ModelGenerator(I ∪ {not A});

end function ;

Fig. 2. Employing Partial Model Checking

So, instead of using the model checker only as a boolean oracle, whenever it en-
counters an unfounded set we also have it extract and return that set. For successive
partial model checks we then first test whether the set is still unfounded w.r.t.I . If this
is the case, we know that also a full partial model check of I would fail, avoid the costly
full partial model check, and continue backtracking.

Otherwise, we need to bite the bullet and perform a full partial model check, as I
may nevertheless contain an unfounded set different from the original one (e.g., a subset
of the latter). Fortunately, IsUnfoundedSet() is extremely light – indeed we sometimes
dub this optimization “quick partial model checking” – and several experiments con-
firmed that even in cases where this optimization does not succeed very often (or not at
all) the overhead is hardly measurable.

The full algorithm exploiting this new approach is displayed in Figure 3.

Finally, we further improve on this algorithm by also extending IsAnswerSet Partial()
as described above, and let it extract an unfounded set whenever it encounters a model
which is not an answer set. That way, after one or more full partial model checks dur-
ing backtracking, we may again switch into “quick mode” and a sequence of expensive
full partial model checks can well be decomposed into alternating sequences of full and
quick partial checks.

In terms of pseudo-code, we only need to replace the following two lines in Figure 3

known uff := not IsAnswerSet Partial(I);
ufset := ∅;

by

known uff := not IsAnswerSet Partial(I ,ufset);

233

var state : { normal, check failed } := normal;
ufset : SetOfClassicalLiterals;

function ModelGenerator(var I : 3-Valued-Interpretation) : bool;
begin

if not DetCons(I) then return false;
if “no atom is undefined in I” then

if not IsAnswerSet(I ,ufset) then
state:=check failed; return false;

else
return true;

Select an undefined atomA using heuristics;
if ModelGenerator(I ∪ {A}) then

return true;
else

if state = check failed then
var known uff : bool := false;
if ufset 6= ∅ then

known uff := IsUnfoundedSet(ufset ,I);
if not known uff then

known uff := not IsAnswerSet Partial(I);
ufset := ∅;

if known uff then
return false;

else
state:=normal;

return ModelGenerator(I ∪ {not A});
end function ;

Fig. 3. Employing Optimized Partial Model Checking

4 Benchmarks

To assess the impact of the optimizations presented in Section 3, we use Quantified
Boolean Formulas (2QBF), a well-known ΣP

2 -complete problem [Pap94] that already
proved to be a suitable benchmark problem in other recent comparisons [KLP03,LPF+02].

Given a Quantified Boolean FormulaΦ = ∃X∀Y φ, where X and Y are disjoint
sets of propositional variables and φ = C1 ∨ . . . ∨ Ck is a formula in 3DNF4 over
X ∪ Y , the problem is to decide whether Φ is valid or not.

The transformation from 2QBF to disjunctive logic programming is a variant of
a reduction used in [EG95], where we separate the actual problem instances and the
following general encoding P2QBF :

t(X) ∨ f(X)← exists(X).

t(Y) ∨ f(Y)← forall(Y).

w ← conjunct(X,Y, Z,Na,Nb,Nc) ∧

4 Disjunctive normal form with three propositional variables per clause.

234

t(X) ∧ t(Y) ∧ t(Z) ∧ f(Na) ∧ f(Nb) ∧ f(Nc).

t(X)← w ∧ forall(X).

f(X)← w ∧ forall(X).

← not w. t(true). f(false).

A concrete 2QBF instance Φ is then encoded by a set FΦ of facts:

– exists(v), for each existential variable v ∈ X;
– forall(v), for each universal variable v ∈ Y ; and
– conjunct(p1, p2, p3, q1, q2, q3), for each disjunct l1 ∧ l2 ∧ l3 in φ, where (i) if li is

a positive atom vi, then pi = vi, otherwise pi= “ true”, and (ii) if li is a negated
atom ¬vi, then qi = vi, otherwise qi=“ false”.
For example, conjunct(x1, true, y4, false, y2, false), encodes x1 ∧ ¬y2 ∧ y4.

Φ is valid, if and only if P2QBF ∪ FΦ has an answer set.

Benchmark Instances We randomly generated 50 instances per problem size such that
the number of ∀-variables is equal to the number of ∃-variables (that is, |X| = |Y |),
each conjunct contains at least two universal variables. and the number of clauses is
equal to the number of variables (that is, |X|+ |Y |).

Compared Systems We took the 2003-05-16 release of DLV (with only minor and
unrelated differences), and created three variants thereof: DLVorig , which implements
the strategy of Figure 2, DLV′, which employs the optimization described in Figure 3,
and DLV′′ with the additional optimization to update the cached unfounded set during
backtracking.

0 10 20 30 40 50
0.01

0.1

1

10

100

1000

Number of Propositional Variables

A
ve

ra
g

e
 T

o
ta

l E
xe

cu
tio

n
 T

im
e

 [
s]

0 10 20 30 40 50
10−2

10−1

100

101

102

103

104

Number of Propositional Variables

M
a

xi
m

u
m

 T
o

ta
l E

xe
cu

tio
n

 T
im

e
 [

s]

o. . .DLVorig , x. . .DLV′, *. . .DLV′′

Fig. 4. Benchmark results for QBF

235

Environment and Execution Benchmarks were performed on an AMD Athlon 1.2 GHz
machine with 512 MB of memory, using FreeBSD 4.8 and GCC 2.95 with -O3 opti-
mization to generate executables. We allowed a maximum running time of 7200 seconds
(2 hours) per instance and a maximum memory usage of 256 MB.

Results Cumulated results are provided in Figure 4. The graph to the left shows the
average computation time for each system over the 50 instances per problem size; the
graph to the right shows the maximum time taken. The plot for a system stops whenever
that system failed to solve some problem instance within the given time and memory
limits, and we can see that DLV′′ was the only system able to solve all instances of
size 52.

To study the performance of our optimizations in more detail (and also because the
aggregate graphs are somewhat dominated by the relatively large number of simpler
instances, cf. the differences between average and maximum times), we extracted the
34 hardest instances from our testbed. This includes several instances of larger sizes
than were relevant for the full tests, where a system was killed once it encountered the
first untractable instance.

Table 5 shows detailed results for those hard instances: specifically, overall execu-
tion time, total number of partial model checks, and number as well as percentage of
quick partial model checks. (We omit the latter two for DLVorig where they are always
zero by definition.)

5 Conclusions

Our benchmarks show that the optimizations we derived and implemented are a clear
win, especially on hard instances of QBF where a significant amount of time is spent on
(partial) model checking. Already DLV′ is a measurable improvement, but for DLV′′,
on average more than 50% of these partial checks enjoy the superior performance of
the quick model checks, resulting in overall speedups of a factor of 2–3 in most cases.

These results are very encouraging and we plan to perform more extensive bench-
marks, for example using encodings from planing domains, plus we are working to
further improve internal data structures and algorithms related to the interplay of gen-
erator and checker. We have also tried to speculatively perform partial model checks
while moving forwards (as opposed to backtracking) in the search tree and obtained
very mixed results. Still, this is certainly an area worth of further investigations and we
plan to revisit this issue.

Acknowledgments I am very grateful to Nicola Leone for fruitful discussions and sug-
gestions related to this work as well as our long running cooperation in general.

Also, I would like to thank the other members of the DLV team whose continuous
support provided the foundation to base this work on, especially Wolfgang Faber and
Simona Perri as well as Tina Dell’Armi, Giuseppe Ielpa and Francesco Calimeri for
their work on the core system and Christoph Koch. Thanks, finally, to the anonymous
reviewers for valuable comments.

This work was supported by the European Commission under projects IST-2002-
33570 INFOMIX, IST-2001-32429 ICONS, and IST-2001-37004 WASP.

236

Overall Execution Quick Partial Checks
Time [s] Partial Number Percentage

Instance DLVorig DLV′ DLV′′ Checks DLV′ DLV′′ DLV′ DLV′′

QBF 40.6 21.41 11.65 10.15 27493 15356 16821 55.9% 61.2%

QBF 40.28 23.09 18.97 10.31 33663 2960 22000 8.8% 65.4%

QBF 40.29 12.87 9.59 6.00 18206 4148 10955 22.8% 60.2%

QBF 40.39 20.97 15.93 10.08 28041 5450 16140 19.4% 57.6%

QBF 44.22 157.53 76.28 69.05 201807 132104 135038 65.5% 66.9%

QBF 44.42 13.72 5.61 4.26 19314 14122 16444 73.1% 85.1%

QBF 48.10 1517.73 1244.86 1026.35 1666943 210568 422252 12.6% 25.3%

QBF 48.15 30.85 19.47 11.45 37743 14888 28432 39.4% 75.3%

QBF 48.18 154.79 111.55 78.85 163636 44120 85724 27.0% 52.4%

QBF 48.44 154.72 86.04 64.88 182439 86715 117204 47.5% 64.2%

QBF 48.46 15.95 12.79 6.74 19020 2986 12300 15.7% 64.7%

QBF 48.47 45.48 32.36 24.75 57605 15424 26380 26.8% 45.8%

QBF 48.48 215.11 152.77 94.73 264435 70390 164814 26.6% 62.3%

QBF 52.11 124.98 93.45 51.15 130943 29376 85568 22.4% 65.3%

QBF 52.21 19.80 12.31 6.14 20695 8542 17354 41.3% 83.9%

QBF 52.29 76.48 59.37 30.77 83294 16062 56013 19.3% 67.2%

QBF 52.31 2812.77 1413.67 1232.85 3353087 1935988 2093868 57.7% 62.4%

QBF 52.37 9.36 7.03 3.95 9800 2180 6148 22.2% 62.7%

QBF 52.39 668.56 459.35 338.83 737280 209700 384930 28.4% 52.2%

QBF 52.41 – – 7183.19 8539647 – 1807494 –% 21.2%

QBF 56.23 692.54 291.47 205.93 694837 463000 578278 66.6% 83.2%

QBF 60.11 785.75 426.62 333.51 729792 355689 461958 48.7% 63.3%

QBF 60.20 2021.44 1649.66 730.83 1989945 199920 1446084 10.0% 72.7%

QBF 60.21 19.30 9.83 6.60 18811 9846 14561 52.3% 77.4%

QBF 60.31 40.62 26.06 12.27 40480 14694 33721 36.3% 83.3%

QBF 60.33 265.13 184.51 105.12 241128 67753 162331 28.1% 67.3%

QBF 60.36 55.33 43.85 18.79 50569 7366 38958 14.6% 77.0%

QBF 64.31 59.52 37.31 18.59 56656 21868 46030 38.6% 81.2%

QBF 64.33 740.64 420.30 370.40 637186 312417 333073 49.0% 52.3%

QBF 64.34 29.09 20.92 9.56 24475 6176 18408 25.2% 75.2%

QBF 64.16 2378.83 1778.20 945.31 2153919 505896 1490504 23.5% 69.2%

QBF 64.6 4373.46 3010.92 1931.37 3156869 908358 1901420 28.8% 60.2%

QBF 64.7 1027.07 875.09 311.22 723407 56068 566996 7.8% 78.4%

QBF 76.39 341.25 276.19 119.20 226053 32172 159434 14.2% 70.5%

Fig. 5. Detailed benchmarks results for hardest QBF instances

References

[Bab02] Y. Babovich. Cmodels homepage, since 2002. http://www.cs.utexas.edu/
users/tag/cmodels.html.

[Bar02] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2002.

[CFLP02] F. Calimeri, W. Faber, N. Leone, and G. Pfeifer. Pruning Operators for Answer Set
Programming Systems. In NMR’2002, pp. 200–209, April 2002.

237

[DG84] W. F. Dowling and J. H. Gallier. Linear-time Algorithms for Testing the Satisfability
of Propositional Horn Formulae. JLP, 3:267–284, 1984.

[DKN02] J. Dix, Ugur Kuter, and D. Nau. Planning in Answer Set Programming using Ordered
Task Decomposition. TPLP, October 2002. Revised version under submission. Short
paper to appear in KI 2003 (German National Conference on Artificial Intelligence).

[DNK97] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding Planning Problems in Nonmono-
tonic Logic Programs. In ECP-97, pp. 169–181. Springer, 1997.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification Theory. JACM,
7:201–215, 1960.

[EFL+03] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A Logic Programming
Approach to Knowledge-State Planning: Semantics and Complexity. ACM TOCL,
2003. To appear.

[EG95] T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive Logic Program-
ming: Propositional Case. AMAI, 15(3/4):289–323, 1995.

[EGM97] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM TODS, 22(3):364–
418, September 1997.

[ELM+98] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. Progress Report on the
Disjunctive Deductive Database System dlv. FQAS’98, pp. 148–163. Springer.

[FLP01] W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for Answer Set
Programming. In IJCAI 2001, pp. 635–640. Morgan Kaufmann Publishers.

[FP96] W. Faber and G. Pfeifer. DLV homepage, since 1996. http://www.dlvsystem.
com/.

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

[JNS+03] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and Jia-Huai You. Unfolding Partiality
and Disjunctions in Stable Model Semantics. Tech. Report cs.AI/0303009, arXiv.org,
March 2003.

[JNSY00] T. Janhunen, I. Niemelä, P. Simons, and Jia-Huai You. Partiality and Disjunctions in
Stable Model Semantics. KR 2000, April 12-15, pp. 411–419. Morgan Kaufmann.

[KLP03] C. Koch, N. Leone, and G. Pfeifer. Using SAT Checkers for Disjunctive Logic Pro-
gramming Systems. Artificial Intelligence, 2003. To appear.

[Lif96] V. Lifschitz. Foundations of Logic Programming. Principles of Knowledge Repre-
sentation, pp. 69–127. CSLI Publications, Stanford, 1996.

[LPF+02] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, C. Koch, C. Mateis, S. Perri, and
F. Scarcello. The DLV System for Knowledge Representation and Reasoning. Tech.
Report cs.AI/0211004, arXiv.org, November 2002. Submitted to ACM TOCL.

[LRS97] N. Leone, P. Rullo, and F. Scarcello. Disjunctive Stable Models: Unfounded Sets,
Fixpoint Semantics and Computation. Information and Computation, 135(2):69–112,
June 1997.

[LRS01] N. Leone, R. Rosati, and F. Scarcello. Enhancing Answer Set Planning. IJCAI-01
Workshop on Planning under Uncertainty and Incomplete Information, pp. 33–42.

[LZ02] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT
Solvers. In AAAI-2002, AAAI Press / MIT Press.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[Sim96] P. Simons. Smodels Homepage, since 1996. http://www.tcs.hut.fi/

Software/smodels/.
[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable

Model Semantics. Artificial Intelligence, 138:181–234, June 2002.
[Syr02] T. Syrjänen. Lparse 1.0 User’s Manual, 2002. http://www.tcs.hut.fi/

Software/smodels/lparse.ps.gz.
[Zha02] Y. Zhao. ASSAT homepage, since 2002. http://assat.cs.ust.hk/.

