
Advanced BackJumping Techniques for Rule
Instantiations

S. Perri1 and F. Scarcello2

1 Department of Mathematics, University of Calabria
I-87030 Rende (CS), Italy
perri@mat.unical.it

2 D.E.I.S., University of Calabria
I-87030 Rende (CS), Italy
scarcello@deis.unical.it

Abstract. The interest in the area of non-monotonic reasoning and declar-
ative logic programming is growing rapidly after the recent development of
a number of Answer Set Programming (ASP) systems. The logic-based lan-
guages supported by such systems are rich enough to represent in a natural
and declarative way a large number of problems from different domains. Nev-
ertheless, the computation of the answer sets is always performed by these
systems on simple ground (i.e., variable free) programs, first computed by a
pre-processing phase, called instantiation. This phase may be computation-
ally expensive, and in fact it has been recognized to be a key issue for solving
real-world problems by using Answer Set Programming. Given any program
P , a good instantiation for it is a ground program P ′ having the same answer
sets as P and such that: P ′ can be computed efficiently from P , and P ′ does
not contain useless rules and thus can be evaluated efficiently.
In this paper, we present a structure-based backjumping algorithm that meets
the above requirements. In particular, given a rule r to be grounded, our
algorithm exploits both the semantical and the structural information about
r for computing efficiently all and only the ground instances of r that should
be included in any sound instantiation of P . That is, from each general rule
r, we are able to compute only the relevant subset of all its possible ground
instances.
We have implemented this algorithm in the ASP system DLV, and we have
carried out an experimentation activity on a collection of benchmark problems.
The results are very positive, as the new technique improves sensibly the
efficiency of the DLV system on many kind of programs.

1 Introduction

After many years of theoretical research and some years of considerable efforts on
developing effective implementations, there are nowadays a number of systems that
support a fully declarative programming style, called Answer Set Programming (ASP)
[1, 2, 4, 5, 7, 6, 10, 11, 9, 12, 13, 18, 19, 22–24].

The knowledge representation language of ASP is very expressive: function-free
logic programs where nonmonotonic negation may occur in the bodies of the rules,
and possibly (i.e., for some systems) with classical negation and disjunction in the
heads of the rules. The semantics of an ASP program P is given by its answer sets
[15], which are subset-minimal models of P , and are ”grounded” in a precise sense.
The idea of answer set programming is to represent a given computational problem by
an ASP program whose answer sets correspond to solutions, and then use an answer
set solver to find such a solution [17].



The logic-based languages supported by these systems are quite rich and offer
a wide range of syntactical constructs, in order to encode problems from different
domains in a very natural and declarative way. Nevertheless, the kernel modules of
all the available ASP systems operate on simple ground (i.e., variable-free) programs.
Indeed, any given program P first undergoes the so called instantiation process, that
computes from P a semantically equivalent ground program P ′.

Since this preprocessing phase may be computationally very expensive, having a
good instantiation procedure is a key feature of ASP systems. Such a procedure, also
called instantiator, should be able to produce a ground program P ′ with the same
answer sets as P such that both: P ′ can be computed efficiently from P , and P ′ does
not contain useless rules, and thus can be evaluated efficiently by an ASP solver.

The main reason of large grounding programs even for small input programs is
that each atom of a rule in a program P may be instantiated to many atoms in
its Herbrand base, which leads to combinatorial explosion. However, most of these
atoms may not be derivable whatsoever, and hence such instantiations do not render
applicable rules. The idea is that the instantiator should generate ground instances
of rules containing only atoms which can possibly be derived from P.

To this end, e.g., the DLV instantiator exploits the dependencies among predi-
cates. The instantiation starts by evaluating first the rules defining predicates P0 that
depend on no other predicates (that is, only defined by facts), then the predicates
P1 that only depend on predicates in P0, and so on. It is worthwhile noting that, if
the input program is normal (i.e., ∨-free) and stratified, this instantiator evaluates
completely the program and no further module is employed after the grounding; the
program has a single answer set, namely the set of the facts and the atoms derived
by the instantiation procedure. If the input program is disjunctive or unstratified, the
instantiation procedure cannot evaluate completely the program.

Even in this case, at each step of the instantiation process, we have a number of
predicates, that we call solved, such that the truth values of all their ground instances
are already determined by the instantiator. For instance, all predicates in P0 are
solved, as well as all predicates that only depend on solved predicates. It follows
that none of these predicates should occur in the rules (but the facts) of the ground
program P ′ produced by the instantiator. All the predicates occurring in the rules of
P ′ should be unsolved, and will be evaluated by the answer set solver.

Example 1. Consider the following rule

r1 : a(X, Z) :−q1(X, Z, Y ), q2(W,T, S), q3(V, T,H), q4(Z, H), q5(T, S, V ).

Suppose we know that predicates q3, q4, and q5 are solved, and consider the following
ground instances for r1:

a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v1, t1, h1), q4(z1, h1), q5(t1, s1, v1).

a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v2, t1, h1), q4(z1, h1), q5(t1, s1, v2).
...

a(x1, y1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v100, t1, h100), q4(z1, h100), q5(t1, s1, v100).

Now, assume that all these instances are applicable, that is, all instances of the
atoms over solved predicates are true, and all instances over unsolved predicates could
be true (i.e., they are not provably false, at this point). Then, it is easy to see that
all these 10000 rules are semantically equivalent to the single instance

a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1).



Thus, we only need all the (applicable) instantiations of unsolved predicates, while
the solved ones are just used to validate such instances. More precisely, we are not
interested in finding all the ”consistent” substitutions for all variables, but rather
their restrictions to the only variables that occur in literals over unsolved predicates.
We call such variables the relevant variables of a rule r, and any applicable ground
instance projected onto the unsolved predicates (as the one shown in the above ex-
ample) a relevant instance for r. These ground rules should be included in any sound
instantiation of P .

In this paper we present a new kind of structure-based backjumping algorithm
that is able to compute efficiently all and only the relevant instances of a rule r. To
this end, it exploits both the semantical information on the relevant variables of r,
and the structural information on how the literals in the body of r are connected each
other through the variables they have in common.

It is worthwhile noting that, unlike other approaches, we do not filter-out useless
instances after their computation. Rather, we directly avoid their generation.

We have implemented this algorithm in the ASP system DLV, and we have carried
out an experimentation activity on a collection of benchmark problems. The results
are very positive, as the new technique improves sensibly the efficiency of the DLV

system on many kind of programs.
The rest of this paper is structured as follows. In Section 2, we give some basic

notions of disjunctive logic programming. In Section 3, we describe how logic pro-
grams are instantiated by the DLV system. In Section 4, we present the algorithm
BJ Instantiate, that given a rule r and the set of relevant variables of r, returns a set
of substitutions for these variables that are in a one-to-one correspondence with all
and only the relevant (ground) instances of r. Finally, in Section 5, we describe our im-
plementation of Algorithm BJ Instantiate and discuss the results of our experiments
with this algorithm.

2 Disjunctive Logic Programming

In this section, we provide a formal definition of the syntax and semantics of disjunc-
tive logic programs.

2.1 Syntax

A variable or a constant is a term. An atom is a(t1, ..., tn), where a is a predicate of
arity n and t1, ..., tn are terms. A literal is either a positive literal p or a negative literal
not p, where p is an atom.1 A (disjunctive) rule r has the following form:

a1 ∨ · · · ∨ an :−b1, · · · , bk, not bk+1, · · · , not bm, n ≥ 1, m ≥ k ≥ 0

where a1, · · · , an, b1, · · · , bm are atoms. The disjunction a1 ∨ · · · ∨ an is the head of
r, while the conjunction b1, ..., bk, not bk+1, ..., not bm is the body of r.

We denote by H(r) the set {a1, ..., an} of the head atoms, and by B(r) the set
{b1, ..., bk,¬bk+1, ...,¬bm} of the body literals. B+(r) (resp., B−(r)) denotes the set of
atoms occurring positively (resp., negatively) in B(r). For a literal L, var(L) denotes
the set of variables occurring in L. For a conjunction (or a set) of literals C, var(C)
denotes the set of variables occurring in the literals in C, and, for a rule r, var(r) =
var(H(r)) ∪ var(B(r)). A Rule r is safe if each variable appearing in r appears also
in some positive body literal of r, i.e., var(r) = var(B+(r)).

1 Without loss of generality, in this paper we do not consider strong negation, which is
irrelevant for the instantiation process; the symbol ‘not’ denotes default negation here.



An ASP program (or disjunctive database, DDB) P is a finite set of safe rules. A
not -free (resp., ∨-free) program is called positive (resp., normal). A term, an atom,
a literal, a rule, or a program is ground if no variables appear in it.

A predicate occurring only in facts (rules of the form a :−), is referred to as
an EDB predicate, all others as IDB predicates. The set of facts in which EDB
predicates occur, is called Extensional Database (EDB), the set of all other rules is
the Intensional Database (IDB).

Please note that we make frequent use of rules without a head :−l1, . . . , ln, called
constraints, which are a shorthand for false :−l1, . . . , ln, and it is also assumed that
a rule bad :−false, not bad is in the DDB, where false and bad are special symbols
appearing nowhere else in the DDB. So, intuitively, the body of a constraint must
not be true in any answer set.

2.2 Semantics

Let P be a program. The Herbrand Universe and the Herbrand Base of P are defined
in the standard way and denoted by UP and BP , respectively.

Given a rule r occurring in a DDB, a ground instance of r is a rule obtained from r
by replacing every variable X in r by σ(X), where σ : var(r) 7→ UP is a substitution
mapping the variables occurring in r to constants in UP . We denote by ground(P)
the set of all the ground instances of the rules occurring in P.

An interpretation for P is a set of ground atoms, that is, an interpretation is a
subset I of BP . A ground positive literal A is true (resp., false) w.r.t. I if A ∈ I
(resp., A 6∈ I). A ground negative literal not A is true w.r.t. I if A is false w.r.t. I;
otherwise not A is false w.r.t. I.

Let r be a ground rule in ground(P). The head of r is true w.r.t. I if H(r)∩I 6= ∅.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e., B+(r) ⊆ I
and B−(r) ∩ I 6= ∅) and is false w.r.t. I otherwise. The rule r is satisfied (or true)
w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

A model for P is an interpretation M for P such that every rule r ∈ ground(P) is
true w.r.t. M . A model M for P is minimal if no model N for P exists such that N
is a proper subset of M . The set of all minimal models for P is denoted by MM(P).

Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) transfor-
mation of P w.r.t. I, denoted PI , is the set of positive rules

PI = { a1 ∨ · · · ∨ an :−b1, · · · , bk | a1 ∨ · · · ∨ an :−b1, · · · , bk, 6 bk+1, · · · , 6 bm

is in ground(P) and bi /∈ I, for all k < i ≤ m}
Definition 1. [20, 15] Let I be an interpretation for a program P. I is an answer set
for P if I ∈ MM(PI) (i.e., I is a minimal model for the positive program PI). 2

3 Instantiation of Disjunctive Logic Programs: DLV’s Strategy

In this section, we provide a short description of the overall instantiation module of
the DLV system, and focus on the “heart” procedure of this module which produces
the ground instances of a given rule.

An input program P is first analyzed from the parser, which also builds the exten-
sional database from the facts in the program, and encodes the rules in the intensional
database in a suitable way. Then, a rewriting procedure (see [14]), optimizes the rules
in order to get an equivalent program P ′ that can be instantiated more efficiently
and that can lead to a smaller ground program. At this point, another module of the
instantiator computes the dependency graph of P ′, its connected components, and a



topological ordering of these components. Finally, P ′ is instantiated one component
at a time, starting from the lowest components in the topological ordering, i.e., those
components that depend on no other component, according to the dependency graph.

3.1 General Instantiation Algorithm

The aim of the instantiator is mainly twofold: (i) to evaluate (∨-free) stratified pro-
gram components, and (ii) to generate the instantiation of disjunctive or unstratified
components (if the input program is disjunctive or unstratified).

In order to evaluate efficiently stratified programs (components), DLV uses an
improved version of the generalized semi-naive technique [26] implemented for the
evaluation of linear and non-linear recursive rules.

If the input program is normal (i.e., ∨-free) and stratified, the instantiator evalu-
ates completely the program and no further module is employed after the grounding;
the program has a single answer set, namely the set of the facts and the atoms derived
by the instantiation procedure. If the input program is disjunctive or unstratified,
the instantiation procedure cannot evaluate completely the program. However, the
optimization techniques mentioned above are useful to generate efficiently the instan-
tiation of the non-monotonic part of the program. Two aspects are crucial for the
instantiation:
(a) the number of generated ground rules,
(b) the time needed to generate such an instantiation.
The size of the generated instantiation is important because it strongly influences the
computation time of the other modules of the system. A slower instantiation proce-
dure generating a smaller grounding may be preferable to a faster one generating a
large grounding. However, the time needed by the former can not be ignored otherwise
we could not really have a computation time gain.

The main reason of large groundings even for small input programs is that each
atom of a rule in P may be instantiated to many atoms in BP , which leads to combi-
natorial explosion. However, most of these atoms may not be derivable whatsoever,
and hence such instantiations do not render applicable rules. The instantiator mod-
ule generates ground instances of rules containing only atoms which can possibly be
derived from P.

3.2 Rule Instantiation

In this section, we describe the process of rule instantiation – the “heart” of the
instantiation module – as it is currently implemented in DLV.

The algorithm Instantiate, shown in Figure 1, generates all the possible instanti-
ations for a rule r of a program P. When this procedure is called, for each predicate
p occurring in the body of r we are given its extension, as a set Ip containing all its
ground instances. We say that the mapping θ : var(r) → UP is a valid substitution for
r if it is valid for every literal occurring in its body, i.e., if for every positive literal p
(resp., negative literal ¬p) in B(r), θp ∈ Ip (resp. θp 6∈ Ip) holds. Instantiate outputs
all such valid substitutions for r, which are in a one-to-one correspondence with the
set of all possible ground instances of r.

Note that, since the rule is safe, each variable occurring either in a negative literal
or in the head of the rule appears also in some positive body literal. For the sake of
presentation, we assume that the body is ordered in a way such that any negative
literal always follows the positive atoms containing its variables. Actually, DLV has
a specialized module that computes a clever ordering of the body (e.g., exploiting



Algorithm Instantiate
Input R: Rule, I: Set of instances for the predicates occurring in B(R);
Output S: Set of Total Substitutions;
var L: Literal, B: List of Atoms, θ: Substitution, MatchFound: Boolean;
begin

θ = ∅;
(* returns the ordered list of the body literals (null, L1, · · · , Ln, last) *)
B := BodyToList(R); L := L1;
MatchFound := true;
S := ∅;
while L 6= null

Match(L, θ, MatchFound);
if MatchFound

if(L 6= last) ) then
L := NextLiteral(L);

else (* θ is a total substitution for the variables of R *)
S := S ∪ θ;
L := PreviousLiteral(L);
MatchFound := false (* look for another solution *)
θ := θ |PreviousVars(L)

else
L := PreviousLiteral(L);
θ := θ |PreviousVars(L)

output S;
end;

Fig. 1. Computing the instantiations of a rule

the quantitative information on the size of any predicate extension) that satisfies this
assumption.

Instantiate first stores the body literals L1, . . . , Ln into an ordered list B =
(null, L1, · · · , Ln, last). Then, it starts the computation of the substitutions for r.
To this end, it maintains a variable θ, initially set to ∅, representing, at each step, a
partial substitution for var(r).

Now, the computation proceeds as follows: For each literal Li, we denote by
PreviousVars(Li) the set of variables occurring in any literal that precedes Li in
the list B, and by FreeVars(Li) the set of variables that occurs for the first time in
Li, i.e., FreeVars(Li) = var(Li)− PreviousVars(Li).

At each iteration of the while loop, we try to find a match for a literal Li with
respect to θ. More precisely, if FreeVars(Li) 6= ∅, we look for an extension of θ to the
variables in FreeVars(Li); otherwise, we simply check whether θ is a valid substitution
for Li. This is accomplished by the procedure Match (figure 2) that, in turns, calls
FirstMatch if this is the first attempt to find a match for Li, or NextMatch if we
already have a valid substitution for Li and we have to look for a further one.

If there is no such a substitution, then we backtrack to the previous literal in
the list, or else we consider two cases: if there are further literals to be evaluated,
then we continue with the next literal in the list; otherwise, θ encodes a (total) valid
substitution and is thus added to the output set S. Even in this case, we backtrack
for finding another solution, since we want to compute all instantiations of r.

Note that this kind of classical backtracking procedure works well for rules with
a few literals and with a few tuples for each predicate extension. However, DLV has
been designed to work even for manipulating complex knowledge on large databases,
and for such applications the simple algorithm described above is not satisfactory.



Procedure Match (L:Literal, var θ:Substitution, var MatchFound: Boolean)
begin

if MatchFound then
FirstMatch(L, θ, MatchFound); (* this is the first try on a new literal *)

else (* the last match failed, look for another match on a previous literal *)
NextMatch(L, θ, MatchFound);

end;

Procedure FirstMatch (L: Literal, var θ: Substitution, var MatchFound: Boolean)

(* Look in the extension IL for the first tuple of values matching θ, and possibly update
θ accordingly. The boolean variable MatchFound is assigned True if such a matching
tuple has been found; otherwise, it is assigned False. *)

Procedure NextMatch (L: Literal, var θ: Substitution, var MatchFound: Boolean)

(* Similar to FirstMatch, but finds the next matching tuple. *)

Fig. 2. The matching procedures

Example 2. Suppose we want to compute all ground instantiations of the rule

r2 : a(X,Y ) :−p1(X, Y ), p2(X,Z), p3(Z,H, T ), p4(T, W ), p5(X,V, Z), p6(X,Y, V ).

and that we have already computed a partial substitution θ for the variables {X, Y, Z,
H, T, W}, but we are not able to find a consistent value for V in the extension of p5,
in order to extend θ. In this case, according to the algorithm in Figure 1, we should
backtrack to the previous literal p4. However, the failure on atom p5(X, V, Z) is inde-
pendent of variables {H,T,W}, and thus we should just find another possible value
for Z. It follows that, intuitively, we could safely backtrack directly to atom p2(X, Z),
where this variable has been instantiated. Thus, jumping over both p3(Z, H, T ) and
p4(T, W ) can allow us to save a very large amount of time, especially if the extensions
of p3 and p4 contains many tuples.

To overcome these kind troubles, a number of extensions of the backtracking
technique have been described in the literature – see, e.g., the intelligent backtracking
technique developed in the logic programming community [3], or the various back-
jumping techniques proposed for solving constraint satisfaction problems (CSPs) [25].
Our rule instantiation problem is closer to CSP, however most of these algorithms
focused on problems with just binary constraints, and looking for just one solution.
On the contrary, in our context, we need a specialized algorithm that should be able
to compute efficiently all instantiations of a rule with predicates of arbitrary arity,
which corresponds to finding all solutions of general (non-binary) constraint satisfac-
tion problems.

4 A Backjumping Technique for DLP Programs Instantiation

In this section, we describe the Algorithm BJ Instantiate, that given a rule r and a
set of relevant variables OutputVars, returns a set of substitutions for these variables
that are in a one-to-one correspondence with all and only the ground instances of r
we are interested in. That is, we do not generate all those ground instances of r that
differ only on non-relevant variables. Formally, BJ Instantiate returns the projections
on OutputVars of all the valid substitutions for r. We call these substitutions the
relevant solutions of our problem.

The basic schema of this algorithm is no more the classical backtracking paradigm,
but rather a structure-based backjumping paradigm, well studied in the constraint
satisfaction area (see., e.g., [8, 25]). In these kind of algorithms, when some backtrack



Algorithm BJ Instantiate
Input R: Rule, I: Set of instances for the predicates occurring in B(R),

OutputV ars: Set of Variables;
Output S: Set of Substitutions;
var L: Literal, B: List of Atoms, θ: Substitution, CSB: Literal, Status: MATCH STATUS;
begin

θ = ∅;
(* returns the ordered list of the body literals (null, L1, · · · , Ln, last) *)
B := BodyToList(R);
L := L1;
Status := SuccessfulMatch;
CSB := null;
S := ∅;
while L 6= null

Match(L, θ, Status);
switch (Status)

case SuccessfulMatch
if(L 6= last) ) then

L := NextLiteral(L);
else (* θ is a total substitution for the variables of R *)

S := S ∪ θ |OutputVars ;
L := BackFromSolutionFound(L, CSB, Status);
θ := θ |PreviousVars(L)

break;
case FailureOnFirstMatch

L := BackFromFailureOnFirstMatch(L, CSB);
θ := θ |PreviousVars(L)

break;
case FailureOnNextMatch

L := BackFromFailureOnNextMatch(L, CSB);
θ := θ |PreviousVars(L)

break;
output S;

end;

Fig. 3. The algorithm BJ Instantiate

step is necessary, it is possible to jump more than one element, rather than just one,
as in the standard chronological algorithm. Of course, such jumps should be designed
carefully, in order to avoid that some solution is missed, especially in our case, where
we have to compute all solutions.

Let r be a rule and B the ordered list of its body literals (null, L1, · · · , Ln, last).
We say that Li (1 ≤ i ≤ n) is a binder for a variable X if there is no literal Lj ,
with 1 ≤ j < i such that X ∈ var(Lj). Moreover, for a set of variables V and a
literal Lk, let ClosestBinder(Lk,V ) denote the greatest literal Li among the binders
of the variables in V . A crucial notion in our algorithm is the Closest Successful
Binder (CSB), which represents, intuitively, the greatest literal that is a binder of
some variable X whose current assigned value belongs to the last computed solution.
The CSB acts as a barrier for some kind of jumps, as described later in this section.

Another important point is the structure of the relationships among the literals
in the body. We say that, for any pair of literals Li, Lj in B, Li ≺d Lj if i ≤ j and
var(Li)∩var(Lj) 6= ∅. Let ≺ denote the transitive closure of the ≺d relationship and,
for any literal L in B, let dep(L) =

⋃
{L′|L≺L′} var(L′). Intuitively, this is the set of

variables that depends on the instantiation of the literal L, and we refer to it as the
dependency set of L.

Example 3. As a running example in this section, consider the following rule

r3 : a(X, Y, Z) :−q1(X,T,W ), q2(X,Y ), q3(Z, S), q4(Z, V ), q5(T, H), q6(H,T, V ).



enum MATCH STATUS = {SuccessfulMatch, FailureOnFirstMatch, FailureOn-
NextMatch};
Procedure Match (L:Literal, var θ:Substitution, var Status: MATCH STATUS)
begin

if Status = SuccessfulMatch then (* the last match was successful *)
FirstMatch(L, θ, Status); (* this is the first try on a new literal *)

else (* the last match failed, look for another match on a previous literal *)
NextMatch(L, θ, Status);

end;

Procedure FirstMatch (L: Literal, var θ: Substitution, var Status: MATCH STATUS)

(* Look in the extension IL for the first tuple of values matching θ, and possibly up-
date θ accordingly. Status is assigned SuccessfulMatch if such a matching tuple exists;
otherwise, it is assigned FailureOnFirstMatch *)

Procedure NextMatch (L: Literal, var θ: Substitution, var Status: MATCH STATUS)

(* Similar to FirstMatch, but finds the next matching tuple. In case of failure, Status is
set to FailureOnNextMatch *)

Fig. 4. Matching procedures for BJ Instantiate

It is easy to check that the dependency set of literal q5(T, H) is {T,H, V }, while
the dependency set of q3(Z, S) is {Z, S, V, H, T}.

In order to instantiate r3, our algorithm needs the additional information on the
relevant variables and the already known instances for the predicates occurring in the
body. Then, assume that OutputVars = {X, Y, Z, T, W}, and that we are given the
following extensions for the predicates occurring in B(r3):

q1(x1, t1, w1) q2(x1, y1) q3(z1, s1) q4(z1, v1) q5(t2, h1) q6(h2, t2, v1)
q1(x1, t2, w1) q2(x1, y2) q4(z1, v2) q5(t2, h2) q6(h2, t2, v2)

Figure 3 shows the algorithm BJ Instantiate. As for Algorithm Instantiate, at
each iteration of the while loop, the procedure Match tries to find a match for a
literal Li with respect to the current partial substitution θ. If it succeeds and Li is
not the last literal, then we can proceed with the next literal Li+1. Otherwise, we
have to backtrack, and thus we have to decide where to jump and, possibly, update
the current CSB. Now, we have a number of different cases to be handled, depending
on the outcome Status of the procedure Match.

1. Success, and θ encodes a total substitution. Since also the match on the
last literal is successful, θ encodes a valid substitution for the variables in r, and
its restriction to OutputVars is therefore added to the set of solutions. Then,
in order to look for further solutions, we have to backtrack. However, in this
algorithm, we are not forced to go back to the previous literal. Rather, we can
jump to the closest literal Lj binding a variable of interest, that is, jump to
ClosestBinder(last,OutputV ars). Moreover, in this case the CSB is set to Lj .

Example 4. In our running example, the algorithm is able to find the total sub-
stitution θ(X) = x1, θ(Y ) = y1, θ(Z) = z1, θ(T ) = t2, θ(W ) = w1, θ(S) = s1,
θ(V ) = v1, and θ(H) = h2. That is, we have a match for all the literals in B and
we are at last. Then, the restriction of θ to the set of relevant variables is added
to S. In our case, this solution corresponds to the following instance of r3:

a(x1, y1, z1) :−q1(x1, t2, w1), q2(x1, y1), q3(z1, s1).

Now, according to the algorithm, we jump back to q3(Z, V ) for finding other
solutions. Note that we do not look for further consistent tuples in the extensions



Function BackFromFailureOnFirstMatch (L: literal, var CSB: Literal) : Literal;
begin (* the first match on a new literal failed *)

L′ := ClosestBinder(L, Vars(L));
if L′ ≺ CSB then

CSB := L′;
return L′;

end;

Function BackFromFailureOnNextMatch(L: Literal, var CSB: Literal) : Literal;
begin (* failure looking for another match for L *)

if L = CSB then
CSB := ClosestBinder(L,OutputVars);

L′ := ClosestBinder(L,DepVars(L))
return max≺{L′, CSB};

end;

Function BackFromSolutionFound(L: Literal, var CSB: Literal, var Status: MATCH STATUS)
: Literal;

begin
Status := FailureOnNextMatch; (* look for another solution *)
CSB := ClosestBinder(L,OutputV ars);
return CSB;

end;

Fig. 5. Backjumping procedures for BJ Instantiate

of q4, q5, and q6, because they do not bind any relevant variable. Indeed, possible
solutions coming from other instances of these predicates (e.g., the solution with
θ(V ) = v2) would just lead to useless rules in the instantiation of the program at
hand. Finally, the CSB is set to q3.

2. Failure at the first attempt to find a match for a literal Li. We jump
back to the closest literal Lj binding any of the variables in Li, that is, jump to
ClosestBinder(Li,var(Li)). Indeed, in this case, the only way for finding a match
for Li is to change the assignment for some of its bound variables. Moreover, if
Lj precedes CSB, then we can push back CSB to Lj . This will make the next
type of jumps less restrictive, see case 3 below.

Example 5. In our running example, the first time that we try to find a match for
q5, we have computed the partial substitution θ(X) = x1, θ(Y ) = y1, θ(Z) = z1,
θ(T ) = t1, θ(W ) = w1, and θ(S) = s1. In this case, we are not able to find
any matching instance in the extension of q5. Indeed, none of its instances has a
value t1 for variable T . Then, we have to change the value assigned to one of the
variables occurring in q5, and thus we can safely jump over q4, q3, and q2, and
try to match again q1(X,T,W ). Indeed, q1 is the closest binder for var(q5), as it
determines the value for variable T .

3. Failure while looking for another match for a literal Li. In this case, Li

is a binder of some set of variables X̄, and we fail in finding a different consistent
substitution for these variables. Since we were successful on our first attempt to
deal with Li, this means that, for some reason, we jumped back to Li from some
later item, say Lj , of the list B. Now, we have to decide where to jump after
the current failure, and this time the variables occurring in Li are not the only
candidates to be changed. Rather, we have to look at the dependency set of Li,
as shown below.

Example 6. Assume that, in our running example, we are looking for another
match for q3(Z, S) and that the CSB is set to q1(X, T, W ). According to the



algorithm, we have to jump to q1, even if it is not a binder for any variable
occurring in q3. The reason is that q1 is a binder for T , which belongs to the
dependency set of q3, and changing its value may lead to some new solution
(possibly comprising values already considered for the variables occurring in q3).

Another important issue concerns the management of the CSB. First, we check
whether the current literal Li coincides with the CSB. If this is the case, we
push back the CSB to ClosestBinder(Li,OutputV ars). In this case, it acts as a
barrier and cannot be jumped, otherwise we can miss some relevant solution as
the following example shows.

Example 7. Let us continue from the execution step described at point 1 above,
where we have found our first solution. Recall that we jumped back to q3(Z, S) and
the CSB is set to this literal. In this case, the CSB is first pushed back to q2(X, Y ),
which is the ClosestBinder(q3(Z, S),OutputV ars). Then, even if according to the
dependency set we could jump to q1, we are forced to stop our jumping back
to literal q2(X, Y ), because of the CSB limit. It is worthwhile noting that, if we
go directly to q1(X, T, W ), we miss the solution obtainable by assigning y2 to
variable Y and corresponding to the following instance of r3:

a(x1, y2, z1) :−q1(x1, t2, w1), q2(x1, y2), q3(z1, s1).

Theorem 1. Algorithm BJ Instantiate is sound and complete. That is, given a rule
r, the ground instances for the predicates occurring in its body, and the set of its
relevant variables OutputVars, BJ Instantiate computes the set containing all and
only the projections over OutputVars of the valid substitutions for r.

5 Experimental Results

5.1 Benchmark Programs

In order to check the validity of the proposed method, we have implemented it in the
grounding engine of the DLV system, and we have run it on a collection of benchmark
programs taken from different domains. For space limitation, we do not include the
code of benchmark programs. However, we give below a very short description of the
problems that are encoded in these benchmark programs.

RAMSEY(3,6) 6= 17 Prove that 17 is not the Ramsey number Ramsey(3, 6) [21].
CONSTRAINT-3COL[20,30] A one-rule encoding of 3-colorability (the classical en-

coding of 3-colorability as a constraint satisfaction problem), on a graph with 20
nodes and 30 edges.

CONSTRAINT-3COL[30,40] Similar to the previous one, but on a graph with 30
nodes and 40 edges.

CONSTRAINT-5COL[20,30] Again, a one-rule encoding of colorability, but for 5
colors and on a graph with 20 nodes and 30 edges.

CRISTAL Deductive databases application that involves complex knowledge manip-
ulations on databases, developed at CERN in Switzerland.

SCHEDULING A scheduling program for determining shift rotation of employees.
HANOI[6discs,63steps] Hanoi Towers with 6 discs and 63 steps.
ANCESTOR Given a parent relationship, find the genealogy tree of each person in

the database.
K-DECOMP Decide whether there exists a hypertree decompositon [16] of a con-

junctive query having width≤K.



5.2 Backtracking vs the new BackJumping Technique

We provided a C++ implementation of Algorithm BJ Instantiate and we integrated
it with the rest of the Instantiator module in the DLV system. Then, we run a
number of experiments by using the above benchmark problems, in order to compare
the performances of the previous backtracking-based rule instantiator with the new
one, proposed in this paper. All binaries were produced by the GNU compiler GCC
2.95.2, and the experiments were performed on a Sun UltraSparc2 machine.

Table 1 shows the results of our tests. For each benchmark program P described
in column 1, column 2 (respectively, 3) reports the times employed to instantiate P
by using DLV, when Algorithm Instantiate (resp., Algorithm BJ Instantiate) is used
in the rule instantiator module. All running times are expressed in seconds.

Program Backtracking Backjumping

RAMSEY(3,6) 6= 17 172.10s 44.91s
CONSTRAINT-3COL[20,30] 10.08s 0.00s
CONSTRAINT-3COL[40,50] 188.24s 0.00s
CONSTRAINT-5COL[20,30] – 0.00s
CRISTAL 43.30s 39.20s
SCHEDULING 76.20s 75.25s
HANOI[6discs,63steps] 12.79s 12.88s
ANCESTOR 26.31s 25.90s
K-DECOMP 60.70s 59.64s

Table 1. A comparison between the backtracking and the backjumping techniques

The results confirm the intuition that the new backjumping-based procedure out-
performs the previous one in many cases, and can be very useful for improving the
efficiency of DLV (and of any other ASP system that could exploit its instatiator).

Of course, the speed-up is not that high if we have to instantiate programs where
all rules are very short, and where thus the two procedures exhibit a similar behavior.
Note that, in some cases, the old procedure can be also slightly better than the new
one, since the latter has some overhead due to the computation of the dependency sets
and the management of the CSB. This is witnessed, e.g., by HANOI[6discs,63steps].

However, we have an impressive speed-up when programs contain some rules with
many literals in their bodies and/or when such rules have a few relevant variables
(i.e., many solved predicates occur in their bodies). For instance, CONSTRAINT-
5COL[20,30] consists of a single long rule where all predicates are solved. In fact, in
this extreme case, we stopped the old procedure that was still running after 2000s,
while the new one instantiated the program almost instantaneously. Moreover, note
that we may have a very good speed-up even if all variables are relevant, as witnessed
by the program RAMSEY(3,6) 6= 17.

Currently, our experimentation activity continues on further benchmark problems.
Also, we are evaluating the quality of the ground programs computed by the algo-
rithm, as well as the impact of such instantiations on the overall system performance.

Acknowledgments

The authors are grateful to Stefania Galizia and Nicola Leone for several useful dis-
cussions on the algorithm and its implementation.

This work was supported by the European Commission under project INFOMIX,
project no. IST-2001-33570, and under project ICONS, project no. IST-2001-32429.



References

1. C. Anger, K. Konczak, and T. Linke. NoMoRe: A System for Non-Monotonic Reasoning.
In Proc. of LPNMR’01, pp. 406–410, LNAI 2173, Springer, 2001.

2. C. Aravindan, J. Dix, and I. Niemelä. DisLoP: A Research Project on Disjunctive Logic
Programming. AI Communications, 10(3/4):151–165, 1997.

3. M. Bruynooghe, and L. Pereira. Deduction revision by intelligent backtracking Imple-
mentations of Prolog (J. Campbell, ed.), Ellis Horwood, 1984, pp. 194-215.

4. Y. Babovich. Cmodels homepage, since 2002. http://www.cs.utexas.edu/users/tag/
cmodels.html.

5. Weidong Chen and David Scott Warren. Computation of Stable Models and Its Inte-
gration with Logical Query Processing. IEEE TKDE, 8(5):742–757, 1996.

6. PaweÃl Cholewiński, V. Wiktor Marek, Artur Mikitiuk, and MirosÃlaw Truszczyński. Com-
puting with Default Logic. Artificial Intelligence, 112(2–3):105–147, 1999.

7. PaweÃl Cholewiński, V. Wiktor Marek, and M. Truszczyński. Default Reasoning System
DeReS. In Proc. of KR ’96, pp. 518–528, 1996.

8. R. Dechter. Enhancement schemes fo constraint processing:backjumping, learning and
cutset decomposition. Artificial Intelligence, 41, 1990.

9. D. East and M. Truszczyński. Propositional Satisfiability in Answer-set Programming.
In Proc. of KI’2001, pp. 138–153, LNAI 2174, Springer, 2001.

10. D. East and M. Truszczyński. dcs: An Implementation of DATALOG with Constraints.
Proc. of NMR’2000, April 2000.

11. D. East and M. Truszczyński. System Description: aspps – An Implementation of
Answer-Set Programming with Propositional Schemata. In proc. of LPNMR’01,pp.
402–405, LNAI 2173, Springer, 2001.

12. U. Egly, T. Eiter, H. Tompits, and S. Woltran.Solving Advanced Reasoning Tasks using
Quantified Boolean Formulas. In Proc. of AAAI’00, pp. 417–422. AAAI Press / MIT
Press, 2000.

13. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and Francesco Scarcello. The KR System dlv:
Progress Report, Comparisons and Benchmarks. Proc. of KR’98, pp. 406–417, 1998.

14. W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization Techniques
for Nonmonotonic Reasoning. In Proceedings of the 7th International Workshop on
Deductive Databases and Logic Programming (DDLP’99), pp. 135–139, 1999.

15. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

16. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
JCSS, 64(3):579-627, 2002.

17. V. Lifschitz. Action Languages, Answer Sets and Planning. In K. Apt, V. W. Marek,
M. Truszczyński, and D. S. Warren, editors, The Logic Programming Paradigm – A
25-Year Perspective, pp. 357–373. Springer, 1999.

18. F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT
Solvers. In Proc. of AAAI-2002, AAAI Press / MIT Press, 2002.

19. N. McCain and H. Turner. Satisfiability Planning with Causal Theories. Proc. of KR’98,
pp. 212–223, 1998.

20. Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing, 9:401–424, 1991.

21. S. Radziszowski. Small Ramsey Numbers. The Electronic J. of Combinatorics, 1, 1999.
22. P. Rao, K.F. Sagonas, T. Swift, D.S. Warren, and J. Freire. XSB: A System for Effi-

ciently Computing Well-Founded Semantics. Proc. of LPNMR’97, pp.2–17, LNAI 1265,
Springer, 1997.

23. D. Seipel and H. Thöne. DisLog – A System for Reasoning in Disjunctive Deductive
Databases. Proc. of DAISD’94, pp. 325–343, 1994.

24. P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138:181–234, 2002.

25. Tsang, E.P.K. Foundations of Constraint Satisfaction. Academic Press, 1993.
26. J. D. Ullman. Principles of Database and Knowledge Base Systems, Computer Science

Press, 1989.


