Improving Query Optimization
for Disjunctive Datalog*

Chiara Cumbo', Wolfgang Faber?, and Gianluigi Greco®

! Dipartimento di Matematica, Universita della Calabria, 87030 Rende, Ttaly
cumbo@mat.unical.it
2 Institut fir Informationssysteme, TU Wien, 1040 Wien, Austria
faber@kr.tuwien.ac.at
3 DEIS, Universita della Calabria, 87030 Rende, Italy
ggreco@si.deis.unical.it

Abstract. In this paper we present a technique for the optimization of
(partially) bound queries over disjunctive deductive databases. In partic-
ular, we extend the magic-set optimization technique (originally defined
for non-disjunctive deductive databases) to the disjunctive case. The
method presented in this paper improves a similar approach presented
in [7] by reducing the number of additionally introduced predicates and
rules.

One drawback, which is intrinsic to both techniques, is that redundant
rules may be created frequently. In order to overcome this, we present a
method for identifying such superfluous rules, which may subsequently
be deleted without changing the semantics, thereby reducing the size of
the rule-base, an important performance factor.

1 Introduction

There is a growing body of work on answering queries over disjunc-
tive deductive databases [5, 8] that have been proposed in the literature.
In particular, the efficient evaluation of queries in disjunctive deductive
databases and the definition of efficient evaluation algorithms for assign-
ing semantics to disjunctive databases have been the subject of several
proposals. Most of these proposals are based on the definition of efficient
fixpoint algorithms and optimization is achieved by using heuristics.

The first attempt to use a different optimization technique for the
evaluation of bound disjunctive Datalog queries was introduced in [6].
This approach stems from the observation that bottom-up query answer-
ing methods tend to explore a much larger search space than what is
strictly necessary, whereas top-down processing uses the information pro-
vided by the query to prune the search space, thus performing a more
focused search, by extending binding propagation methods defined for
Datalog queries to disjunctive Datalog queries.

* This work was supported by the EC under projects IST-2002-33570 INFOMIX and
IST-2001-37004 WASP.

Its main idea is to adapt the well-known magic-set method for the case
of disjunctive programs. The magic-set method is a strategy for simulating
the top-down evaluation of a query by modifying the original program
by means of certain rules, acting as filters for the relevant information
needed for the query. It essentially consists of three separate steps: (1)
An Adornment step in which the relationship between a bound argument
in the rule head and the bindings in the rule body is made explicit. (2)
A Generation step in which the adorned program is used to generate
the magic rules which simulate the top-down evaluation scheme. (3) A
Modification step in which the adorned rules are modified by the magic
rules generated in step (2); these rules are called modified rules.

An elaborated extension of the magic-set technique to the disjunctive
case has been published in [7]. In this paper we present an alternative
extension, which needs fewer additional predicates and rules, by exploiting
a direct coupling with the DLV system [2, 3]. Due to space limits, we will
not describe the architecture of the system in detail and refer to [4].

A crucial point of both approaches is that during the rewriting redun-
dant rules are created frequently. Since the number of rules in a program
is a critical performance factor, these redundancies can deteriorate run-
time behavior. In extreme cases, this overhead alone can outweigh the
benefits of the optimization.

Unfortunately, it is infeasible to identify all cases of redundancies be-
cause of complexity results for the subsumption problem. However, we
formulate a technique which can identify some of these cases in poly-
nomial time. In principle, it consists of a greedy approach to detecting
subsumption. Informal performance tests have shown a positive impact
on a number of problems. In particular, the proposed approach yields a
speedup on a number of problems and reduces overhead for other prob-
lems, while its introduced overhead is only mild.

2 Preliminaries on Disjunctive Datalog

A disjunctive rule (rule, for short) r is a formula

ay v -+ V ap = by, ,bg, not bgy1, -+, not by,. (1)
where ai,---,an,b1,---,by, are classical literals and n > 0, m > k > 0.
The disjunction a; v --- v a, is the head of r, while the conjunc-
tion by,...,bg, not bgyq,..., not by, is the body of r. Moreover, H(r) =

{a1,..., a,} is the set of the literals in the head and B(r) = B*(r)UB (r)
is the set of the body literals, where BT (r) (the positive body) is {b1,. ..,
br} and B~(r) (the negative body) is {bx+1, - .., by }. Finally, if the body
is empty (i.e. k = m = 0), r is called a fact, and we usually omit the “:=”

sign. A predicate defined only by facts is called EDB predicate, while a
predicate defined by the rules of the program is called IDB predicate).

A disjunctive datalog program (alternatively, disjunctive logic program,
disjunctive deductive database) P is a finite set of rules. A Datalog’ pro-
gram P (i.e., such that Vr € P : B~ (r) = () is called positive. A Datalog”
program such that each rule has exactly one head predicate is referred to
as Datalog program. Note that in this paper only programs are consid-
ered, for which Vr € P : H(r) # 0 holds.

The model-theoretic semantics assigns to any program P the set
SM(P) of its stable models. Let P be a disjunctive datalog program
and F be a set of facts. Then, a query Q for P over the set of facts F' is a
conjunction of atoms, that defines a mapping from the facts of P U F to
a finite (possibly empty) set of finite (possibly empty) tuples of atoms for
Q. Given a query Q and an interpretation M of P, 9(Q, M) denotes the
set of substitutions for the variables in O such that Q is true in M. The
answer to a query Q over the fact F, under the brave semantics, denoted
by Ansy(Q,F), is the set Up9(Q, M), such that M € SM(P U F). The
answer to a query Q over the fact F, under the cautious semantics, de-
noted by Ans.(Q,F), is the set Np9(Q, M), such that M € SM(PUF).

3 Magic-Set for Datalog Queries

In this section we briefly review the main steps of the magic-set method,
for the case of Datalog queries. For details, we refer to [1].

Adornment Step. An adorned program is a program whose predicate
symbols have associated a string «, defined on the alphabet {b, f}, of
length equal to the arity of the predicate. A character b (resp. f) in the
i-th position of the adornment associated with a predicate p means that
the i-th argument of p is bound (resp. free), i.e., there (resp. not) is a way
for passing some binding information from the query to it, by simulating
a top-down evaluation.

The adornment consists of generating an adorned program, that can
be used for deriving how the binding of the query propagates. The pred-
icates occuring in the query are adorned by marking each constant argu-
ment with b, all others with f. This is accomplished by a function Adorn-
Query which outputs a tuple (adornedQuery,S), where adornedQuery is
the adorned query and S is a stack of the adorned predicates.

Ezample 1. Consider the query p(1), q(2,X), r(X,Y)?, where p and q
are IDB predicates, while r is an EDB predicate. Then, the function
AdornQuery outputs the query p®(1), q**(2,X), r(X,Y), and pushes on
the stack S the adorned predicates p° and g"*. O

Once the stack of adorned predicates S has been created, we use it
for adorning all rules of the program by tracing the propagation of the
binding of the arguments of the query into the rules. In particular, given
an adorned predicate p®, each rule r having the literal p(t) in the head
is adorned by exploiting a particular strategy that is known as SIPS
(Sideways Information Passing Strategy), which simulates the data flow
occurring in the top-down evaluation of the query.

In the following, we will refer to the algorithm implementing the SIPS
as the AdornRule algorithm. Roughly, it takes as input a rule r to
be adorned w.r.t. p®, the stack S of adorned predicates to be used for
propagating the binding (constructed by AdornQuery), and an addi-
tional argument adornedPredicates, containing all the adorned predicates
generated so far. Initially, after the call to AdornQuery, we have that
adornedPredicates and S are equal.

Then, iteratively, a preferred literal among the ones that are admis-
sible in the rule, that is among the ones that can be adorned respecting
the SIPS, is chosen. The iterations continue until all literals have been
considered or no more admissible literal is left.

Thus, a natural way (the one usually described in the literature) for
generating the adorned program consists of the following steps: (1) ex-
tract an adorned predicate p® from S, (2) use p® for propagating the
binding into the program, and collect in S all the other adorned predi-
cates generated, (3) if S is not empty return to Step (1).

Ezample 2. Continuing from Ex. 1, consider the rules p(X) :-q(X, X). and
q(X,Y) :--r(X,Y),q(X,Y). First, p°® is popped from S, generating the rule
p°(X) :-g"®(X,X). and pushing q® onto the stack. Then, gq®® is popped,
generating the rule q°®(X,Y) :- r(X,Y), q®®(X, Y)., and finally q°* is popped,
giving rise to g”*(X,Y) :-r(X,Y),q®*(X, Y). O

Generation and Modification Steps. We use the adorned program
for the generation of the magic rules. First, we define a transformation
over the adorned literals. For each adorned literal p®, its magic version
consists of the literal magic_p® in which we eliminate the variables which
are free w.r.t. . In the following, given an adorned predicate p®, we often
denote its magic version by magic(p®); moreover, given a conjunction of

n adorned literals pf*,. .., p2", we denote by magic(p{*,...,ps") the con-
junction magic(pf) ,..., magic(p®~). Then, for each adorned predicate
p?® in the body of any adorned rule r, we generate a magic rule r,, such

that (i) the head of r,, consists of its magic version, and (ii) the body
of rp, consists of the magic version of the head literal of r,, and those
predicates of r, which are relevant for propagating the binding on p®.

In the following we denote by Generate(r,) the set of magic rules,
generated by the procedure outlined above.

Finally, the modification step consists in the modification of each
adorned rule; specifically, for each adorned rule whose head is p*(X), we
extend the rule body by inserting magic(p®). The final program will
contain only the rules which are needed to answer the query.

Ezample 3. Continuing from Ex. 2, the corresponding magic rules
.~ bb . ‘e b .~ obb . . o qbb
are magic_g°°(X,X) :-magic_p®(X)., magic_g°°(X,Y) :-magic_q®°(X,Y).,
magic_g"®(X,Y) :-magic_q® (X), r(X,Y).
The associated modified rules will be p°(X) :-magic_p®(X), (X, X).,
qbb(xa Y) o magic—qbb(xa Y)a I'(X, Y)a qbb(x)'a and
qbf(x7Y) :_magichbf(x)ar(an)aqbb(an)' U

Query Rules. In the steps described so far, the query is used only for
deriving the original set of adorned predicates. In fact, for each adorned
predicate of the query g$*, (i) the fact magic(gs*) has to be asserted,
(ii) a rule of the form g;(t;) - g5 (t;) has to be introduced.

Note that Step (1) is necessary in order to provide the starting point
for the top-down evaluation, while Step (2) is necessary in order to provide
the answer to the original query. We assume that this is done inside a
function called BuildQueryRules.

Ezample 4. Continuing from Ex. 3, the generated query rules are
magic_p°(1)., magic_g**(2)., p(1) :--p°(1)., and q(2,X) =" (2,X). D

4 Magic-Set Method for Datalog" Programs

In this section we present a technique for the optimization of disjunctive
Datalog queries, which has been implemented and integrated into the
DLV system [2,3]. One proposal for extending the magic-set technique
to disjunctive Datalog queries has already been proposed in [7], and, in
fact, the spirit of the present paper is close to this approach.

Yet, there are important differences; in particular, we do not use any
additional predicates (called collecting predicates in [7]) or any additional
rules for adorning disjunctive rules. Indeed, such predicates and rules are
intrinsically needed in [7], as that technique consists of a rewriting into
an equivalent program to be evaluated by DLV conversely, our technique
has been designed for being integrated into the core of the system, and,
hence, it may use many optimization strategies resulting in a significant
speed-up of the computation.

As a result of the application of these new ideas, of the great atten-
tion in the implementation issues we obtain an efficient implementation

(especially if compared with the prototypes proposed in the literature),
whose designing has been left as a material for further research in [7].

The main algorithm, called DisjunctiveMagicSet, is reported in
Figure 1. We point out that despite all the traditional implementations
of the magic-set technique, our proposal is not conceptually divided into
the traditional adornment, generation, and modification step; indeed, it
exploits a stack S of predicates, for storing all the adorned predicates
to be used for propagating the binding of the query: at each step, an
element is removed from S, and it is used for processing each rule r of a
given program P, by contextually generating the associated modified and
magic rules. Moreover, we point out that the algorithm can be used for
propagating the binding into non-disjunctive rules as well.

In more detail, the algorithm takes in input a positive disjunc-
tive datalog program P (without integrity constraints) and a query
g1(t1),...,8a(tn). If the query contains some IDB predicates that can
be used for propagating the binding, it outputs a program P’ consist-
ing of a set of modified rules, of magic rules, and of query rules. The
adorned query and the corresponding magic rules are built in the steps 2
and & by means of the functions AdornQuery and BuildQueryRules,
respectively.

Ezample 5. Consider the disjunctive datalog program

P(X) vp(Y) :-a(X,¥), r(X).
r(Y) == p(¥).

and the query p(1)? over the set of facts {a(1,2), a(2,3)}. In the algo-
rithm of Figure 1, the function AdornQuery outputs the query p°(1),
and pushes on the stack S the adorned predicate p®. Moreover, the func-
tion BuildQueryRules outputs the rule p(X) :-p°(X) and the fact
magic p°(1). O

The central part of the algorithm consists of the steps 4-13, that are
repeated until the stack S becomes empty, i.e., until there is no further
adorned predicate to be propagated. Next, we briefly explain the main
ideas that are used for propagating the binding into disjunctive rules, and
that are exploited in the implementation.

Let p® be an adorned predicate that has been removed from the stack S
in step 5, and consider a disjunctive rule r in P of the form

r: p(t)vpi(t1) v ... vpa(ta) :-qi(s1),. .-, qu(Sn)-

Input: A DatalogV program P, and a query gi(t1),...,gn(ta)-
Output: The optimized program P’.
var S: stack of adorned predicates; adornedQuery: set of literals;
modified Rules ,magicRules: set of rules;

begin

1. if g1(t1),...,8a(ta) has some IDB predicate then
(adornedQuery,S):=AdornQuery(gi(t1),...,gn(tn) , P);
(modified Rules,magic Rules):= Build QueryRules(adorned Query);
while S # () do

p*:=S.pop();

for each rule 7 € P: p(t) vpi(ti) v ... vpa(ta) :-qi(s1),.-.,Qu(sa) do

let 75 be the rule of the form
p(t) =-not pi(t1),...,not pa(ta),qi(s1),---,qu(sa);
8. let rq:=Adorn(rs,p®,S) of the form
Pa(t) :-not P;’l (tl)r .- 7n°t Pgn (tn)a qfl (sl):] qu(sfﬂ);
9. magicRules :— magicRules U Generate(r,);
10. let r,, be the modified rule of the form
P () vp (81) v ... v (ta) i —
magic(p® (t),p* (t1), -« -, P (ta)), a1 (s1)P, - . ., 42" (sa);

11. modifiedRules := modified Rules U {rm};

12. end for

13. end while

14. P’:=magicRules U modifiedRules;

15. return P’;

16. end if
end.

NS G oo

Fig. 1. Algorithm DisjunctiveMagicSet

in which the binding of p® must be propagated due to the presence of a
predicate p(t) in its head. The difference w.r.t. the case of normal pro-
grams is that the binding have to be propagated also in the predicates
p1(t1),--.,pn(ts) occurring in the head. A simple idea for reusing the
standard procedures consists of replacing r with a rule r; without dis-
junction of the form

rs: p(t) :-not pi(t1),...,n0t pPa(tn),q1(s1),---,qn(Sn)-

that can be adorned in the usual manner, since it is not disjunctive.
The reason for pushing the predicates pi(t1),...,pa(ta) in the body by
negating them, lies in the fact that these predicates cannot be used for
binding variables, as they actually occur only in the head of the original
rule.

The rule r; is then adorned by means of the function AdornRule
informally described in the previous section. Here we recall that it takes
in input a rule and an adorned predicate and outputs the adorned rule,
while pushing on the stack S all the adorned predicates that have been
generated during its execution. Hence, in step § we assume that the rule

r, obtained by means of this adornment is of the form
re: pY(t) :-not pf*(t1),...,not pa=(ty), qfi(si), . ,qﬁ“(sm).
where ay, ..., Qq, b1, .. B are generic adornment strings.

Ezample 6. Consider again the program and the query of Example 5, and
let p° be the adorned predicate to be processed. The only rule in which
the binding can propagate is the disjunctive one p(X) vp(Y) :-a(X,Y), r(X).
Hence, when propagating on the predicate p(X) we preliminarily con-
struct the standard rule p(X) :-not p(Y), a(X,Y), r(X). whose adornment
is p?(X) :-not p°(Y),a(X, Y), r?(X). Moreover, it is important to note that
the binding of p® will also propagate on p(Y) by producing the adorned
rule p®(Y) :-not p°(X),a(X,Y),r?(X). Note that in both cases the predi-
cate r® is pushed onto the stack S, and this predicate will generate the
adorned rule r°(Y) :-p°(Y). 0

The algorithm subsequently uses the adorned rule r, for generating
the magic rules in the step 9. As r, is not a disjunctive rule, this is
essentially the same for the technique in the case of Datalog queries, and,
hence, is carried out by means of the function Generate sketched in the
previous section.

Ezample 7. In the program of Example 6 the propagation of the predicate
p® generates the following magic rules

magic_r®(X) :-magic_p®(X), p°(¥), a(X,Y).
magic_p®(Y) :-magic_p®(X),r®(X),a(X,Y).

magic_r®(X) :-magic_p®(Y), p°(X), a(X,Y).
magic_p®(X) :-magic_p®(Y), r°(X), a(X,Y).

?

where the first group is generated from p°(X) :-not p®(Y), a(X,Y), r°(X),
XY

(1), 8(x,¥),2°
while the second one from p°(Y):-not p°(X),a(X,Y),r"(X).
Moreover, by considering also the rule r®(Y):-p®(Y) we derive
magic_p®(Y) :-magic_r®(Y). 0

Finally, step 10 is devoted to the generation of the modified rule. The
problem is that we need to reconstruct a disjunctive rule by pushing back
each adorned predicate p; into the head, that has been translated into
the body in the adornment step. Hence, we construct the rule r,, of the
form

p*(t) vpi(t1) v ... vpa*(ta) : — magic(p®(t),pi* (t1),- .-, Pa"(ta)),

qi(sl)ﬂla s ,q;f"J(sm).

and outputs a conjunction of magic predicates associated to the ones in
input; for instance given pt*(X,Y,Z) it outputs magic p°t*(X, Z)

Ezample 8. By means of the application of the generation step to our
running example, we derive the following set of modified rules

p°(X) vp®(Y) :-magic_p®(X),magic_p®(Y),a(X,), r"(X).
p°(Y) vp®(X) :-magic p°(¥),magic.p®(X), a(X, ¥), r*(X).

Finally, for the sake of completeness we point out that the rewritten
program P’ is constituted by the above rules, plus the magic rules of
Example 7 and the following rule r®(X) :-magic r®(X), p°(X). obtained by
considering the propagation of r®. O

As pointed out before, the spirit of this approach is the same of the one
proposed in [7] (even though further optimized), and, hence, the sound-
ness and completeness of the above algorithm follow easily.

Proposition 1. Let P be a Datalog’ program, let Q be a query, and let
P’ be the result of the Algorithm DisjunctiveMagicSet. Then, P =g P’
under both the cautious and brave semantics.

5 Identifying Redundant Rules

In this section we address one drawback of the magic-set method when
extended to disjunctive Datalog programs, consisting of the generation of
a number of redundant, useless rules, which may reduce the optimization
effect. For a better understanding of this point, let us return to Example
8; as the careful reader may have noticed, the first two modified rules co-
incide, even though they are generated by adorning different head atoms
of the same rule. Such a redundancy is, indeed, intrinsic in any possi-
ble implementation; nonetheless, we point out that compared to [7], our
rewriting reduces drastically the presence of redundant rules, since it does
not require any additional predicates or any additional rules, which are
an additional source of redundancy.

In our implementation, great attention has been devoted to this issue,
since we have experimentally observed that it is crucial for the whole op-
timization process for several problem domains. In particular, we propose
an efficient (polynomial time) heuristic for the individuation of such rules,
whose relevance is not restricted to the magic-set method in itself.

In fact, this heuristic has been integrated into the core of the DLV
system, in order to identify redundancy in any type of program. However,

redundant rules are less frequently found in user-specified programs. We
point out that the complexity results obtained for subsumption problems
implies that such an heuristic cannot be complete. Still, we are able to
show its soundness, i.e., all the rules identified by the heuristic are indeed
subsumed by some other rule.

Before presenting the algorithm we introduce some concepts and no-
tations. Let C be a set of literals, and Xy,...,X, the variables oc-
curring in C. Then, a substitution for C' is a finite set of pairs ¥ =
{X1/t1,...,Xp/tn} where tq,...,t, are terms (either variables or con-
stants). Moreover, we denote by 9J(C) the set of literals obtained from C
by simultaneously replacing each occurrence of X; by t; (1 <i < n).

Definition 1. Let 1 and 79 be two rules of P. Then, r; is subsumed by
r9 (denoted by r; C 7o) if there exists a substitution 9 for H(r;) U B(r1),
such that 9(H (r1)) C H(re) and 9(B(r1)) C B(rq). A rule r; is redundant
if there exists a rule 79 such that 71 C rs. O

Definition 2. Let L; and Ly be two sets of literals. Then, a matcher for
Ly w.r.t. Lo is a substitution 9 for Ly such that 9(L;) = Lo. O

Given two rules 71 and 79 of a logic program, the concept of subsump-
tion can be restated in terms of existence of matchers.

Definition 3. Let r; and r9 be two disjunctive rules, [be a literal of r.
Then, [is a candidate for the subsumption verification for r1 w.r.t. ro if
there exists a substitution ¢ such that (i) if I € B(r;), then there exists
I' € B(ry) such that 9(I) = {I'}, and (ii) if I € H(ry), then there exists
I' € H(rg) such that 9(I) = {I'}. Moreover, 9 is called matcher for the
candidate 1. O

Note that in the above definition, each matcher 9 satisfying conditions
1 and 2 gives rise to at least one literal of 7o that can be matched with /;
indeed, we denote by matchable(l,71,79) the set of all such literals of 7.

We point out that given a literal [, three different representative
situations may occur: i) there exists exactly one candidate literal, i.e.,
|matchable(l,r1,72)| = 1, (in such a case the literal is said deterministic),
ii) |matchable(l,r1,72)| = 0, or iii) |matchable(l,r1,72)| > 1, i.e., the se-
lection is non-deterministic. Obviously, the source of the complexity of
the problem lies in literals of the latter type. Note that in the point ii)
above [cannot be a candidate.

In the following, given a rule r, and a set of literals L of r, we denote
by r— L the rule obtained by removing from r each literal in L. Moreover,

10

given a substitution 9 we denote by ¥(r) the rule obtained by the appli-
cation of ¥ to both the head and the body of r. Our heuristic is based on
the following observation.

Proposition 2. Let 1 and ry be two disjunctive rules. Then, rq is sub-
sumed by ro if and only if there exists an ordering of all the literals
in H(r1) U B(r1) of the form li,... L, and a sequence of substitutions
Y,y ...y O, such that

1. each l; is a candidate for the subsumption verification for ¥(r1 —
{li,...,li_1}) w.r.t. ro, where 9 =91 U... U1, and
2. 9; is a matcher for the candidate l;.

Essentially, our heuristic tries to construct the sequence [4,...,1[,, of
the above proposition and the associated substitutions 91,...,9, in an
incremental way. At the first step we choose I} in 71 and [{ in 79 such
that there exists a matcher 1, for I} and I. Then, at each successive step,
say i, we choose a literal I} of ry that is a candidate for the subsumption
verification. Moreover, in case there is more than one candidate, we select
the one which is preferred according to the following definition.

Definition 4. Let r1 and 72 be two disjunctive rules, let I1,...,l; be a
sequence of distinct literals of 7y and 91, . .. ,9; be a sequence of matchers.
Then, a candidate literal [of ry — {l1,...,l;} is preferable to a candidate
literal I of r — {l1,...,;} wrt. Iy,...,1; if i) |matchable(l,r1,72)| <
|matchable(l',r1,72)| or ii) |matchable(l,r1,r9)| = |matchable(l',r1,72)]
and the number of distinct variables not yet matched w.r.t. 9,...,9; of
[is greater than that of I’. Moreover, a literal [in r; is preferred if it does
not exists a literal preferable to it. O

Note that a deterministic literal is always preferable to a non-
deterministic one. Moreover, we point out that, in general, deciding
whether [is a preferred literal can be done in polynomial time.

The heuristic is based on the idea of selecting the preferred literal
as described in the above definition. Moreover, each time a literal [is
selected, it is deleted from the rule, while other than storing the sequence
91, .. .,%m,, we simply update a unique substitution 9. The soundness of
this approach can be easily proved.

It is worth noting that the algorithm runs in polynomial time, while
the problem is NP-hard, Hence completeness cannot hold; nevertheless,
several experimental results confirmed its effectiveness.

11

6 Conclusions

We have presented a new technique for the optimization of (partially)
bound queries, that extends the magic-set method to the case of disjunc-
tive databases. As one intrinsic drawback of this method is the gener-
ation of many redundant rules, we have also introduced a strategy for
their efficient identification. We point out that the proposed heuristic
can be applied also for identifying redundant rules in programs in which
no optimization is performed, albeit this situation is likely to occur less
frequently. We are currently working on the definition of more focused
prevention strategies that can be directly integrated into the optimiza-
tion module of the DLV system.

Finally, our long-term objective is to extend the application of the
magic set method to the case of disjunctive programs with constraints,
and, more ambitiously, to the case of general unstratified programs.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. A Deductive System for Nonmonotonic Reasoning. In Jiirgen Dix and Ulrich
Furbach and Anil Nerode, editor, Proceedings of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), number 1265
in Lecture Notes in AI (LNAI), pages 363-374, Berlin, 1997. Springer.

3. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The KR System dlv: Progress Report, Comparisons and Benchmarks. In
Anthony G. Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors, Proceedings
Sizth International Conference on Principles of Knowledge Representation and Rea-
soning (KR’98), pages 406-417. Morgan Kaufmann Publishers, 1998.

4. Wolfgang Faber and Gerald Pfeifer. DLV homepage, since 1996. http://www.
dlvsystem. com/.

5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365—-385, 1991.

6. Sergio Greco. Optimization of Disjunction Queries. In Danny De Schreye, editor,
Proceedings of the 16th International Conference on Logic Programming (ICLP’99),
pages 441-455, Las Cruces, New Mexico, USA, November 1999. The MIT Press.

7. Sergio Greco. Binding Propagation Techniques for the Optimization of Bound
Disjunctive Queries. IEEE Transactions on Knowledge and Data Engineering,
15(2):368-385, March/April 2003. Extended Abstract appeared as [6].

8. Teodor C. Przymusinski. Stable Semantics for Disjunctive Programs. New Gener-
ation Computing, 9:401-424, 1991.

12

