From UML Diagramsto Jess Rules:
Integrating OO and Rule-Based L anguages
to Specify, | mplement and Execute Agents

M. Martelli and V. Mascardi

DISI - Via Dodecaneso 35, 16146, Genova, Italy
{martelli, mascardi }@li si.unige.it

Abstract. The paper discusses the D-CaseLP multi-agent system (MAS) pro-
totyping environment and the software engineering aspects that it helps to face.
The target implementation language of agents developed using D-CaseLP is Jess,
a language inspired by the CLIPS expert system shell allowing to supply knowl-
edge in the form of declarative rules. The choice of a declarative implementation
language is motivated by the recently growing interest in this technology as a
vehicle for modeling agent rationality, explicitly representing the agent’s knowl-
edge, verifying system properties, enhancing knowledge sharing and communi-
cation. The MAS developer can directly implement agents using Jess, or she/he
can take advantage of the D-CaseL.P automatic translation process from UML
into Jess. The last choice allows to exploit well established use-case driven and
object-oriented methods for capturing the MAS requirements and specify some
MAS issues (interaction protocols followed by agents, MAS architecture, agent
types and instances) in a graphical way. Jess agents, being defined by hand or
obtained as the output of the automatic translation process, are finally integrated
into the JADE platform and executed.

1 Introduction

Declarative specification and implementation languages, such as functional, logic and
rule-based ones, are mainly used in the academic world. The specification of industrial
software is usually carried out adopting object-oriented analysis and design approaches,
while its implementation is mainly realized using imperative or object-oriented lan-
guages. One of the reasons of this approach is that concepts, notations and methods
associated with object-oriented analysis and design techniques (and UML in particular)
are increasingly familiar to a mass audience of software engineers. Also, object-oriented
and imperative languages such as Java, C++ and C are definitely more widespread in
industrial companies than Prolog, ML, or rule-based languages a la CLIPS. This is usu-
ally motivated by reasons of efficiency.

Nevertheless, there are many industrial application fields where a declarative ap-
proach to both specification and implementation should be preferable to a traditional
OO or imperative one. Besides being reusable, declarative knowledge is more modular
and flexible than imperative knowledge. It has better semantics, makes detecting and
correcting contradictory knowledge easier, and provides abstraction of the (real) world

in a natural way. The use of meta-programming techniques in a declarative setting pro-
vides a support for the integration of different kinds of knowledge. It is our opinion that
these features make the declarative paradigm a suitable solution for developing and ver-
ifying prototypes of complex applications, where a set of autonomous, intelligent and
distributed agents cooperate and coordinate the exchange and integration of knowledge
within a Multi-Agent System (MAS).

In this paper we propose an integration of OO and declarative approaches that ex-
ploits both the benefits of the declarative approach to the development of MAS and
the diffusion of the UML graphical language to specify different aspects of complex
systems.

We discuss the D-CaseLP prototyping environment which allows us to describe the
interaction protocols followed by agents, the MAS architecture and the agent types and
instances using UML, and to automatically create the rule-based code for the agents
in the MAS in such a way that the UML specification is satisfied. The obtained code
must be manually completed by the developer with the behavioral knowledge which
was not explicitly provided at the specification level. This completion step does not
require a deep insight in rule-based languages and is guided by comments included in
the automatically generated code. In this way, a developer who is not confident with
rule-based languages can concentrate on the UML specification and make a little effort
to complete the rule-based code in order to make it executable. On the other hand, the
developer who prefers to define agents in a declarative language, can skip the UML
specification stage and directly write the Jess code.

A software engineering methodology supports the engineer and developer from the
requirement capture stage to the prototype execution stage. As far as requirement anal-
ysis is concerned, we adopt an existing multiview, use-case driven and UML-based
method [3,4]. As a by product of our approach, we are able to check the coherence of
the UML artifacts produced as an output of the requirement analysis stage thanks to
the execution of the working prototype. Checking the coherence of UML diagrams is a
well known and still open problem that we succeed to face almost for free.

The structure of the paper is the following: Section 2 introduces the D-CaseLP pro-
totyping environment and how it helps to face the modeling, implementation and exe-
cution stages. Section 3 sketches the requirement analysis stage. Section 4 clarifies the
resulting integrated method and shows a simple example involving all the engineering
stages, from requirement analysis to execution. Section 5 concludes.

2 TheD-CaseL P AOSE tool

D-CaseLP (Distributed CaseLP, [1]) is a MAS rapid prototyping environment designed
and developed by the Logic Programming Group of the Genova University Computer
Science Department. It is based on CaseLP [10] from which it inherits the agent and
MAS model.

D-CaseLP provides languages and tools for facing the engineering of a MAS from
the architectural design stage to the implementation of a working prototype. The ar-
chitectural design stage consists in determining the roles (seller, buyer, broker, auction
manager, etc) necessary for the application, establishing the complete role model (i.e.

the interaction protocols which may take place among roles), grouping the roles in
agent classes, assigning the most suitable architecture (rule-based, BDI, etc') to each
class and finally determining the needed agent instances. The languages provided for
facing this stage include an extension of UML and its XML-based textual counterpart,
D-CaseLP-XML. Diagrams which only include standard UML constructs can be graph-
ically modeled with existing UML-based modeling tools.

The implementation of the working prototype is the most original contribution
of D-CaseLP: it exploits the XSLT technology (ht t p: / / www. w3. or g/ TR/ xsl t)
and the ability to export UML diagrams into the XML Metadata Interchange For-
mat XMI to automatically generate rules which respect the given UML diagrams. The
rule-based language we choose for the implementation of D-CaseLP agents is Jess
(htt p: // her zber g. ca. sandi a. gov/ j ess/). The core Jess language is com-
patible with CLIPS (ht t p: / / www. ghg. net/cl i ps/ CLI PS. ht nl), the C Lan-
guage Integrated Production System developed in 1985 at the NASA’s Johnson Space
Center to satisfy NASA’s need of a reliable, efficient and low cost expert system. Jess
uses the Rete algorithm [8] to process rules and extends CLIPS with some features in-
cluding backwards chaining, working memory queries, and the ability to manipulate
and directly reason about Java objects.

Some portions of the Jess code generated starting from the UML diagrams must be
completed by the developer in order to make it executable. Once completed, the Jess
code can be integrated into the FIPA-compliant JADE platform [5], and the resulting
JADE prototype can be executed. JADE offers already implemented tools to monitor
and debug the prototype.

1) choose tool
2) define models

Spec. in Spec. in Spec. in
Ration. Rose Together ArgoUML
\ [[
v
Spec. in) expor
XMI
4a) specify 4b) translate g
Specification in
D-CaselP-XML
5) translate g
6) complete |
Yava classes to
% JESS rules interface JESS
with JADE

7) execute
ADE+JESS | <——

Fig. 1. MAS modeling, implementation and execution in D-CaseLP.

1 At the time of writing only the rule-based architecture is available for implementing agents.

The concatenation of modeling, implementation and execution stages is graphically
depicted in fig. 1 where activities on the left are manually carried out by the developer
and activities on the right are completely automatic (note that activity 4a represents an
alternative to the sequence of activities 1; 2; 3; 4b). The following sections discuss them
in detail.

2.1 Modeling stage: D-CaseLP protocol, agent and architecture diagrams

The MAS static architecture is defined by three diagrams: protocol, agent and archi-
tecture. When choosing an UML-based tool for their modeling?, the developer should
verify that it allows to export UML diagrams into the XMI.

D-CaseLP protocol diagrams are mainly based on AUML protocol diagrams [11,12].
With respect to AUML there are some restrictions to avoid ambiguities and to allow a
complete automation of their translation into Jess:

1. in each protocol there is only one initiator role;

2. if more than two roles are involved in a protocol, the protocol must be split into
sub-protocols, each one involving only two roles;

3. boolean connectors for concurrent delivery of messages are represented in an ex-
plicit way: the thread where the boolean connector appears is divided into as many
threads as the messages to deliver, connected by the boolean connector. From each
thread a message is sent.

To make an example, fig. 2 represents a correctly modeled D-CaseLP protocol di-
agram corresponding to the FIPA Request Interaction Protocol [9] where an explicit
notification of acceptance (the AGREE message) is needed.

‘ Initiator_Role ‘ ‘ Participant_Role ‘

FAILURE

INFORM-DONE

INFORM-RESULT

Fig. 2. Request Interaction Protocol.

In D-CaseLP the entities participating to a protocol are roles, and not agent in-
stances, from the specification phase to the prototype implementation. The association

2 protocol diagrams may include extensions to the standard UML definition: it is not always
possible to graphically specify them using existing tools. In this case, the developer should
specify the diagrams directly into D-CaseLP-XML.

between a role and the agent classes playing that role, between an agent class and its
architecture, and between an agent instance and an agent class are defined in separate
architecture and agent diagrams.

D-CaseLP architecture diagram models the associations between an agent class, its
architecture (relation has_architecture) and one ore more roles it may play (relation
plays_role), while the agent diagram is used to associate each agent instance to its
agent class and to its initial state. Architecture and agent diagrams are similar to the
ones proposed in [6].

2.2 Implementation stage: from UML to Jess

To obtain a working prototype where agents respect the modeled UML diagrams the
following steps must be faced:

1. XMl file generation: the diagrams are exported into XMI.

2. Translation from XMI to D-CaseLP-XML.: the XMI specification is translated into
the internal intermediate format, D-CaseLP-XML. This translation is achieved thanks
to an automatic translation process based on the XSLT technology. Alternatively,
the developer can define (some of) the diagrams directly in D-CaseLP-XML.: this
language has been designed to easily describe the concepts characterizing the D-
CaseLP entities.

3. Translation from D-CaseLP-XML into Jess: the D-CaseL.P-XML specification is
translated into partially instantiated Jess rules (one group of rules for each agent
class) which implement a behavior coherent with the protocol diagram; the corre-
sponding Java classes necessary for interfacing Jess and JADE are created. Also
this translation is automatically achieved thanks to an XSL file.

4. Jess code completion: the Jess rules need to be completed in order to be executed. In
fact they respect the given protocol diagram, which does not specify under which
conditions a message is sent, and which actions should follow the reception of a
message. Also the initial state of each agent instance must be explicitly defined.

The translation from D-CaseLP-XML into Jess deserves some explanations. Let us
suppose to have a D-CaseLP-XML protocol specification corresponding to the inter-
action protocol depicted in fig. 2 and let us suppose that the architecture diagram for
the application establishes that the agent class Customer plays the role Initiator_Role.
The Jess rules for the Customer class resulting from the automatic translation of the
protocol and architecture diagrams will include:

— Rule for starting the protocol: “if a condition Condition is met, then send a request
message to one agent playing the role of Participant_Role and assert state-sent-
request”.

— Rules to be applied after the request has been sent: “if the current state includes the
atom state-sent-request and a participant agent answers with an agree(Content)
message (resp. a refuse(Content) message), then retract state-sent-request and
assert state-agreed (resp. state-refused)”.

— Rules to be applied in case of agreement: “if the current state includes the atom
state-agreed and a participant agent answers with a failure(Content) message

(resp. inform-done(Content), inform-result(Content)), then retract state-agreed
and assert state-failure (resp. state-inform-done, state-inform-result)”.

— Rules for terminating the protocol: “if the current state includes state-refused
(state-failure, state-inform-done, state-inform-result) then retract the atom and
do actions RefusedActions (FailureActions, InformDoneActions, InformResultAc-
tions)”.

The emphasized text in the rules indicates the part of Jess code that the developer must
fill by hand. Note that all the information that can be retrieved from the diagrams is
automatically translated in form of Jess rules. The missing portions of code correspond
to information not specified at the diagram level. The retraction of state-Current and
the assertion of state-Succ models the movement of the agent from the current to the
successive protocol state. In the implemented system, state atoms are generated in a
way that ensures they are unique.

This simple example explains the rationale behind some restrictions we posed to
AUML protocol diagrams: for example, splitting the life threads of the roles involved
in a protocol is necessary to identify the protocol states which may be reached during the
protocol execution in an unambiguous way, and to generate the Jess rules accordingly.

2.3 Execution stage: exploiting JADE features for debugging

The execution stage consists in compiling the Java source files automatically created
during the third implementation step, integrating them with the JADE platform and
starting the JADE prototype execution. D-CaseLP provides two scripts, compile and
exec, for the purpose. Running the prototype allows to follow the interactions that take
place between the agents in the MAS thanks to a set of monitoring facilities provided
by JADE. If the agents are programmed for interacting in different ways according to
the content of their state, the MAS developer can manually modify the files defining the
agents’ initial state and run the prototype starting from many different initial situations.
This will result in different sequences of messages exchanged by the agents that the
MAS developer will observe to get feedback on the correctness of the agents definition.

3 Specifying requirementsin D-Casel P

The engineering stages covered by D-CaseLP do not include requirement specification.
This means that, before using D-CaseLP, the developer should have adopted some en-
gineering method to clarify which entities belong to the system’s context, which ones
constitute the system under development, which functionalities are provided and re-
quired by the context entities, which are the main ways to use the system (use cases).
We extended D-CaseLP methodology with the requirements capture approach pre-
sented in [3] to cover the complete engineering cycle. The work presented in [3] refines
and extends existing proposals of use-case driven methods for requirement specifica-
tion combined with object-oriented techniques, particularly in connection with visual
notations such as UML. It is a multiview, use-case driven and UML-based method, char-
acterized by the total separation of the Domain Model from the System; the distinction

between the System and the environment; and the use of a very Abstract State, in-
stead of the many optional use case states, to allow expressing abstract requirements
about the interaction of the System and the context.

The output of the method consists of different views of the System, plus a part,
Dictionary, needed to give a rigorous description of such views:

— Context View describes the context of the System, that is which entities (context
entities) and of which kind may interact with the System, and in which way they
can do that.

— Use Case View shows the main ways to use the System (use cases), making clear
which roles take part in them.

— Internal View describes abstractly the internal structure of the System, that is
essentially its Abstract State.

The “trait-d’union” between this method and D-CaseLP is represented by the Use
Case Behavior View: from each use case the corresponding D-CaseLP protocol dia-
gram can be derived and executed. Executing protocol diagrams by means of the JADE
prototype corresponds to animating the corresponding use cases, allowing to check the
coherence of the requirement specification results.

4 Theintegrated D-Casel P methodology

The D-CaseLP engineering method, complemented with the specification requirement
approach sketched in sect. 3 leads to an integrated methodology which can be sum-
marised in 9 steps.

1. Define the use-case diagrams by means of the Use Case Behavior View. They
are necessary to clarify the main patterns of interactions between the System and
the entities in its context.

2. Derive the D-CaseLP protocol diagrams from the use-case diagrams. The developer
performs this activity by hand. No consistency check is provided for this activity,
but, as illustrated by the following lottery example, the derivation is usually easy.

3. Define the architecture diagram which groups subsets of the agent roles into single
classes and associates an agent architecture to each agent class, and the agent dia-
gram establishing the initial agent instances. These diagrams allow us to decouple
agent roles and agent classes.

4. Export all UML diagrams (D-CaseLP protocol, architecture and agent diagrams)
into the XMI language. The process is completely automatic provided that the UML
diagrams have been modeled using a case tool which allows to export diagrams into
XM, and that the diagrams only contain standard UML operators.

5. Translate the XMI specification into the internal intermediate format D-CaseLP-
XML using the XSLT technology. The process is completely automatic. As shown
in fig. 1, the user can decide to manually specify the protocol, architecture and
agent diagrams into D-CaseLP-XML in case, for example, no tool for exporting
UML graphic representation into XMI representation is available.

6. Translate the D-CaseLP-XML specification into partially defined Jess rules and
crate the Java classes for interfacing Jess and JADE. The process is completely
automatic.

7. Complete the skeleton defined in the Jess rules taking into account the use cases
defined in step 1. There is no automatic means to guarantee the correctness of the
resulting Jess program w.r.t. the original UML diagrams. The developer should
carefully take into account under which conditions, stated in the Use Case Be-
haviour View, a message should be sent, and she/he should complete each Jess
rule with the right conditions.

8. Use JADE tools for running the specification as many time as to become confident
that the behavior is coherent with the one foreseen in the use cases.

9. lteratively refine the diagrams until the desired behavior is obtained2.

The full description of the methodological integration experience can be found in [2]. To
illustrate its benefits we show how a use case produced during the software specification
stage can be animated using D-CaseLP tools. The example involves the specification of
a lottery. Lottery tickets are numbered by integer numbers, the winners are determined
by means of an order over such numbers, and a player buys a ticket by selecting its
number. The tickets must be bought and paid on-line using credit cards with the help of
an external service handling them. Paossible clients must register with the lottery system
to play, becoming players; and players access the system in a session-like way. An
external service takes care of the registration of the players and of the distribution of
the session keys.

regi'sterMe(CL,D,C)
[not D.ok() or not C.ok()] /
CL.failedRegistration();

/lCreditCardHandle

wrongCard(C) /
CL.failedRegistration();

registe:rMe(CL,D,C)
[D.ok() and C.ok()] /

CCH.check(C); CreditCardHandle

okCard(C) /

cod =AH.register(D,C);

pr = create(PlayerR,
CreditCard = C,
COD = cod,

_ data = D);
Players = Players U {pr};
CL.areRegistered(cod);

Fig. 3. Register use case

We consider the Register use case illustrated by the Behavior View in fig. 3 whose
textual description is: ““A client may register by giving her/his personal data and those
of a credit card. If her/his data are correct and those about the credit card are accepted

3 At this point it would be interesting to automatically point out which UML diagram (or part
of it) is responsible for the problem which is eventually looked at. We did not face this aspect
yet, but we will as part of our future work.

‘ E ‘ ‘ Client ‘ \agendg.‘é,cﬁ"df ‘ ‘

REQUEST
(registerMe
(c1,D, C)

PlayerR_
Handler

Accesses_
Handler

REFUSE
(failedReg()

REQUEST
(check(C))

REFUSE
(wrongCard(C))

REFUSE
(failedReg())

AGREE
INFORM(okCard(C))

REQUEST [
(register(D, C))
AGREE

INFORM
(registered(D, C, cod))

— REQUEST
(create(C, cod, |D))

AGREE

INFORM
(created(C, cpd, D, pr))

AGREE

INFORM
(areRegistered(cod))

Fig. 4. D-CaseLP protocol diagram.

by its handler, then she/he will receive a code, determined by the access handler, and
will be considered registered; otherwise she/he will be informed that her/his registra-
tion has been refused.” Starting from the Register use case we develop the D-CaseLP
protocol diagram shown in fig. 4.

From the D-CaseLP protocol, architecture and agent diagrams (not shown here for
space constraints) we can automatically generate the Jess code for the given agent
classes, complete this code, create the Java classes for interfacing Jess and JADE and
feed JADE with the Java and Jess code.

As an example, the Jess rule shown in table 1 is taken from the program of the lottery
manager. It manages the case that the personal data or the credit card data provided by
the client are not correct, and a REFUSE(failedReg) message is to be sent. The bold
font indicates the part of code added by the developer. The first pieces of added code,
(data ?cl 2d ?c) and (or (not (ok ?d)) (not (ok ?c))), allow to retrieve the client personal
and credit card data saved when the client request was received and to verify the “ok”
condition over both of them. The second piece of added code, failedReg, is the content
of the REFUSE message and the third piece, (retract-string (str-cat ”(data ™ ?cl ”
?d” ” ?¢ ™)), is the action to perform after the message has been sent (it removes the
client information).

Once the code for the agent classes program has been completed, it is necessary
to define the initial state of the agent instances. This initial information determines the
protocol diagram branch that will be followed in a simulation run. For example, if the

(defruleE.2.1.1
(state E_1 ?cid)
(data ?cl ?2d ?¢c)
(or (not (ok ?d)) (not (ok ?c)))
=>
(assert (state E_2_1_1 ?cid))
(retract-string
(str-cat "(state E_1 " ?cid ")"))
(bind $?content (create$ failedReg))
(send (assert (ACLMessage
(communicative-act REFUSE)
(role-sender E) (role-receiver Client)
(conversation-id ?cid) (content $?content))))
(retract-string (str-cat ”(data ” 2cl ” 7 2d ” ” 2¢)")))

Table 1. Jess rule for the lottery application.

lottery manager (E_1) state does not include information ensuring that the client credit
card and personal data are ok, the client request will not be accepted and the simulation
run will confirm this expectation. The output of the JADE Sniffer agent will look like
in fig. 5%,

If the lottery manager state contains the information needed to determine that the
client data are ok, it will send a request to the credit card handler (CrediCard_1) to
know if the given credit card can be accepted or not. According to its state the credit
card handler will answer that the credit card number cannot be accepted, leading to the
situation depicted in fig. 6, or it is valid (not shown).

REQUEST:0 (333 33) e
AGREEDQ (332 790 332)

INFORM:O (333 411 B33)

Fig.5. Client personal or credit card data are not ok.

“ Besides the agents from the lottery application, the output includes the directory facilitator
agent df (rightmost one) which is automatically provided by JADE to offer yellow pages ser-
vices.

REQUEST:0(238 238) 3

i

1}

AGREEQ (232 2856 238)

F

INFORMD (238 332 38)

-

el Y

RE iUEST"I 122

REQUEST:N (122)
REFUBE:A|(122)
FUSE 1 (122 _ |1

0 L

E

s O B - & O

Fig. 6. Credit card is not accepted by the CC Handler.

Provided that the initial agent states are chosen in a clever way and that enough sim-
ulations are run, the output of each simulation run should correspond to one possible
trace in the protocol diagram (and in the sequence and statechart diagrams it originates
from), and all the possible traces should be “demonstrated” by a simulation run. If this
does not happen, it may be due to some problem in one of the previous engineering
stages: requirement specification, design or implementation. The developer may itera-
tively refine the steps until the expected behavior and the observed behavior are coher-
ent. Checking the coherence of sequence and statechart diagrams produced during the
requirement specification and discovering new sequences not foreseen during that stage
are useful features which D-CaseLP provides for correctly engineering the MAS.

5 Conclusions

As noticed in Section 2.1 of [7], the predominant approach to specify MASs is to adapt
existing object-oriented analysis and design techniques. Even if there are advantages
in this approach (mainly, that object-oriented concepts, notations and methods are cur-
rently the most known and widespread ones), there are some disadvantages too: the kind
of decomposition that object-oriented methods encourage is at odds with the kind of de-
composition that agent-oriented design encourages, and object-oriented methodologies
do not capture many aspects of agent systems such as agents pro-actively generating
actions or dynamically reacting to changes in their environment.

Our proposal suggests an agent-oriented extension to UML where the stress is on
typical agent features such as protocols, agent architectures and agent classes. The UML
specification can be automatically translated into a rule based language, Jess, whose
declarative nature makes it very suitable for modeling/implementing agent features.

In this way we aim at bridging the gap between the widespread UML-based speci-
fication approach and the less known Jess language, accommodating the needs of both
practitioners from the industry and from the academy. We pursue our aim by means of

the D-CaseLP integrated framework where object-oriented and declarative technologies
are combined to support the engineering of a MAS from its early requirements analysis
to the development of a working prototype.

References

1.

10.

11.

12.

R. Albertoni, M. Martelli, V. Mascardi, and S. Miglia. Specifica, implementazione ed ese-
cuzione di un prototipo di sistema multi-agente in D-CaseLP. In Proc. of WOA 2002, Milano,
Italy, 2002. Pitagora editrice, Bologna. In Italian.

E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From requirement specification to
prototype execution: a combination of multiview use-case driven methods and agent-oriented
techniques. Accepted at SEKE 2003, San Francisco Bay.

E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Requirement
Specification. In Proc. of SEKE 2002. ACM Press, 2002.

E. Astesiano and G. Reggio. Tight Structuring for Precise UML-based Requirement Speci-
fications: Complete Version. Technical Report DISI-TR-03-06, DISI, Universita di Gen-
ova, Italy, 2003. Available at ftp://ftp.disi.unige.it/person/Reggi oG
Ast esi anoReggi 003c. pdf.

F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent systems with JADE. In
Intelligent Agents VII. Springer Verlag, 2001. LNAI 1986.

F. Bergenti and A. Poggi. Exploiting UML in the design of multi-agent systems. In Engi-
neering Societies in the Agents World. Springer Verlag, 2000. LNCS 1972.

P. Ciancarini and M. Wooldridge. Agent-oriented software engineering: The state of the
art. In Agent-Oriented Software Engineering - First International Workshop, AOSE 2000,
Limerick, Ireland, 2000. Springer Verlag.

C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence, 19:17-37, 1982.

Foundation for Intelligent Physical Agents. FIPA Request Interaction Protocol specifica-
tion. Standard. Downloadable from htt p: // www. fi pa. or g/ specs/ fi pa00026/
SCO00026H. ht mi ., 2002.

M. Martelli, V. Mascardi, and F. Zini. Specification and simulation of multi-agent systems
in CaseLP. In Proc. of Appia—Gulp—Prode 1999, L’Aquila, Italy, 1999.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Proc. of the AOIS
Workshop at the 17th National Conf. on Artificial Intelligence, Austin, Texas, 2000.

J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent interaction protocols in UML.
In Agent-Oriented Software Engineering - First International Workshop, AOSE 2000, Lim-
erick, Ireland, 2000. Springer Verlag.

