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Abstract. In this paper we present a Java library called JAVASET that of-
fers a number of facilities to support declarative programming like those usually
found in CLP languages: logical variables, list and set data structures (possibly
partially specified), unification and constraint solving over sets, nondeterminism.
The paper describes the main features of JAVASET and it shows how these fea-
tures can be exploited to write in Java declarative solutions to a number of simple
problems in a CLP style.

1 Introduction

Many different constraint solvers have been designed in the last twenty years, devoted to
different constraint domains with different features, and using different implementation
techniques. Most of them have been proposed in the context of Constraint Logic Pro-
gramming (CLP). Among them we can mention Prolog IIT and IV [5,16], CHIP [10,19]
CLP(R) [14], GNU Prolog (formerly clp(FD)) [7,3], CLP(SET) [8] and ECLIPSE [11].

On the other hand, from the beginning of '90ties, researchers have realized that it
can be convenient to have constraint solvers embedded in a more conventional program-
ming setting (in particular an object-oriented one), in which one can accommodate the
fundamental capabilities of CLP as well as those constructs for programming and soft-
ware structuring that are typical of conventional programming languages. As a matter
of fact, most real-world software development is done using conventional programming
languages, in particular, object-oriented languages such as C++ and Java.

Among the proposals that move along these lines one of the best known is that of
the ILOG Solver [15,13]. In this system, constraints and logical variables are handled as
objects and are defined within a C++ class library. Thanks to the encapsulation and
operator overloading mechanisms, programmers can view constraints almost as if they
really were part of the language. Similar proposals are those of INC++ [12], NeMo+

[18], and JSolver [4], the last one based on the Java language instead of on C++.

In all these proposals the constraint solvers are viewed as libraries of the host lan-
guage, more or less integrated with the language itself. A different approach for allowing
constraints in a conventional programming language consists in defining a new program-
ming language, or extending an existing one, in such a way constraints are viewed as
"first-class citizens” of the language itself. This is the solution adopted for instance in
the languages Alma-0 [2], Singleton [17], and DJ (Declarative Java) [20,21].

A potential advantage of this approach with respect to that based on a library is that
it allows a tighter integration between constructs of the host language and the facilities
offered by the constraint solver, making programs simpler and more “natural” to write.
On the other hand, however, the design and development of a new language is surely a
more difficult task, and the resulting systems are likely to be less easy to integrate with
other existing systems.

The work presented in this paper is another proposal following the OO library ap-
proach: we endow an OO language, namely Java, with facilities for defining and manipu-
lating constraints, by providing them as a library—called JAVASET. What is peculiar in



our proposal, however, is the kind of data abstractions and constraints that the library
provides, and the programming style that these facilities support. Specifically, some no-
table features of JAVASET are: logical variables; list and set data structures, possibly
partially specified (i.e., containing uninitialized logical variables); unification (in partic-
ular, unification over lists and sets); a powerful set constraint solver which allows to
compute with partially specified data; nondeterminism (though confined to constraint
solving).

These facilities provide a valuable support to declarative programming. In particular
the constraint solver allows complex (set) expressions to be checked for satisfiability on
a specific domain, disregarding the order in which they are encountered and the instan-
tiation of variables occurring in them. Moreover, the use of partially specified set data
structures, along with the nondeterminism “naturally” supported by operations over
sets, are fundamental features to allow the language to be used as a highly declarative
modelling tool, in particular for combinatorial problems.

All the features listed above for JAVASET are present also in the CLP(SET) lan-
guage [8], but embedded in a CLP framework. An attempt to “export” these features
outside CLP is represented by the definition of the SINGLETON language [17], a declar-
ative language that combines most of the features considered in this paper with “tra-
ditional” features of imperative programming languages, such as the iterative control
structures and the block structure of programs. SINGLETON, however, is a completely
new language, with its own syntax and its own semantics. One of the aims of this work
is to allow us to compare the approach followed in SINGLETON with the library based
approach followed in JAVASET, in order to evaluate the gain in the expressive power
related to the effort needed to develop the new facilities and the easiness to use them.
Actually, the debate about pros and cons of the two approaches is still largely open.

2 An informal introduction to programming with JavaSet

First of all we show a simple example of a Java program using JAVASET which allows
us to give the flavor of the programming style supported by the library.

Problem: Compute and print the maximum of a set of integers.

For the sake of simplicity we assume that the set of integers is directly supplied by the
program (instead of being read for instance from a file). Hence we will focus on the
definition of the method max that computes the maximum of a set s of integers. Observe
that the proposed implementation does not take care of execution efficiency. Indeed,
JAVASET is mainly conceived as a tool for rapid software prototyping, where easiness of
program development and program understanding prevail over efficiency.

class Max
{ public static Lvar max(Set s) throws Failure

{ Lvar x = new Lvar();
Lvar y = new Lvar();
Solver.add(x.in(s));
Solver.forall(y,s,y.leq(x));
Solver.solve();
return x; }

public static void main (String[] args) throws IOException, Failure

{ int[] sample_set_elems = {1,6,4,8,10,5};
Set sample_set = new Set(sample_set_elems);
System.out.print(" Max = "); max(sample_set).print(); } }

x and y are two logical variables and both are uninitialized. Invocation of the add
method adds the constraint x.in(s) (i.e., x € s) to the current constraint store. This



constraint is evaluated to true if s is a set and x belongs to s. If x is uninitialized when the
expression is evaluated this amounts to nondeterministically assign an element of s to x.
Invocation of the forall method allows to add to the constraint store a new constraint
y.leq(x) (i.e.,y < x)foreach y belonging to s. As soon as the solve method is invoked
the constraint solver checks whether the current collection of constraints in the constraint
store is satisfiable or not. If it is, the invocation of the solve method terminates with
success. The value of x represents the integer we are looking for and it is returned as
the result of max. If, on the contrary, one of the constraints in the constraint store is
evaluated to false, backtracking takes place and the computation goes back till the nearest
choice point. In this case, the nearest and only choice point is the one created by the
x.in(s) constraint. Its execution will bind nondeterministically x to each element of s,
one after the other. If all values of s have been attempted, there is no further alternative
to explore and the computation of max terminates raising an exception Failure. If no
catch clause for this exception is provided, the whole computation terminates reporting
a failure (actually this is not the case of the max method, since a value of x for which all
the constraints hold surely exists—exactly the maximum of s).

Executing the program with the sample set of integers declared in the main method
causes the message Max = 10 to be printed to the standard output.

3 Logical variables and composite data objects

JAVASET provides logical variables and two new kinds of data structures: sets and lists.
These new features are implemented by three classes, Lvar, Lst, and Set, for creation
and manipulation of logical variables, lists and sets, respectively.

A logical variable is an instance of the class Lvar, created by the statement

Lvar VarName = new Lvar(VarNameExt,VarValue);
where VarName is the variable name, VarNameExt is an optional ezternal name of the
variable, and VarValue is an optional Lvar value associated with the variable.

The external name is a string value which can be useful when printing the variable
and the possible constraints involving it (if omitted, a default name of the form "Lvar_n",
where n is a unique integer, is assigned to the variable automatically). An Lvar value can
be either a primitive type value, or any library or user defined class object (provided it
supplies a method equals for testing equality between two instances of the class itself).
In particular, an Lvar value can be an instance of Lvar, Lst, or Set

A logical variable which has no Lvar value associated with it or whose Lvar value is an
uninitialized logical variable (or list or set), is said to be uninitialized (or an unknown).
Otherwise, the logical variable is initialized. Lvar values other than uninitialized logical
variables (or lists or sets) are said known wvalues. Uninitialized logical variables will
possibly assume a known value (i.e., they become initialized) during the computation,
in consequence of some constraints involving them.

A list is a finite (possibly empty) sequence of arbitrary Lvar values (i.e., the elements
of the list). In JAVASET a list is an instance of the class Lst, created by the statement
Lst LstName = new Lst(LstNameExt,LstElemValues) ;
where LstName is the list name, LstNameExt is an optional external name of the list, and
VarElemValues is an optional array of Lvar values cy,...,c, of type ¢, which constitute
the elements of the list. The constant Lst.empty is used to denote the empty list. A list
can be either initialized or uninitialized. An uninitialized list is like a logical variable,

but constrained to be (possibly) initialized by list objects only.

Hereafter, we will often make use of an abstract notation—which closely resembles
that of Prolog—to write lists in a more convenient way. Specifically, [e1,ea,...,€,] is
used to denote the list containing n elements ey, es, ..., e,, while [] is used to denote



the empty list. Moreover, [e1,€s,...,€, | R], where R is a list, is used to denote a list
containing the n elements ey, ey, ..., e,, plus elements in R. In particular, if R is
uninitialized, [e1, €s, ..., e, | R] represents an “unbound” list, with elements ey, ..., e,
and an unknown part R. Similar abstract notation will be introduced also to represent
sets (with square brackets replaced by curly brackets).

A set is a finite (possibly empty) collection of arbitrary Lvar values (i.e., the elements
of the list). While in lists the order and repetitions of elements are important, in sets
order and repetitions of elements do not matter. In JAVASET a set is an instance of the
class Set, created by the statement

Set SetName = new Set (SetNameExt,SetElemValues) ;
where SetName, SetNameExt, and SetElemValues have the same meaning than in lists.
The constant Set.empty is used to denote the empty set. Also, a set can be either

initialized or uninitialized.

Example 1. Lvar, Lst, and Set definitions

Lvar x = new Lvar(); // uninitialized 1. var.

Lvar y = new Lvar("y",’a’); // initialized l. var. (value *a’); ext’l name "y"
Lvar t = new Lvar(x); // uninitialized 1. var.; same as variable x

Lst 1 = new Lst("1"); // uninitialized list; ext’l name "1"

int[] s_elems = {2,4,8,3};
Set s = new Set("s",s_elems); // initialized set (value {2,4,8,3}); ext’l name "s"

Elements of a list or of a set can be also logical variables (or lists or sets), possibly
uninitialized. For example, the following declarations

Lvar x = new Lvar();
Object[] pl_elems = {new Integer(1),x};
Lst pl = new Lst(pl_elems);

create the list pl with value [1,x], where x is an uninitialized logical variable. A list
(resp., set) that contains some elements which are uninitialized logical variables (or lists,
or sets) is said a partially specified list (set). Note that in a partially specified set the
cardinality is not completely determined. For example, the partially specified set {1,x}
has cardinality 1 or 2 depending whether x will get value 1 or different from 1, respec-
tively (actually, each partially specified set/list denotes a possibly infinite collection of
different sets/lists, that is all sets/lists which can be obtained by assigning admissible
values to the uninitialized variables).

A list (resp., set) can be also obtained as the result of evaluating a list (resp., set)
constructor expression. Let e be an Lvar expression (i.e. an expression returning a Lvar
value), 1 and m be list expressions (i.e., expressions returning a list object or a logical
variable whose value is a list object), and x be an uninstantiated logical variable. A list
constructor is an expression of one of the forms:

(i) 1.ins1(e) (head element insertion)  (i7i) 1.ext1(x) (head element removal)

(77) 1.insn(e) (tail element insertion) (iv) 1.extn(x) (tail element removal)
Expressions (i) and (ii) denote the list obtained by adding wval(e) as the first and the
last element of the list 1, respectively, whereas expressions (iii) and (iv) denote the list
obtained by removing from 1 the first and the last element, respectively. Evaluation of
expressions (7i7) and (iv) also causes the value of the removed element to become the
value of x. !

! Extraction methods for lists require that the invocation list 1 is initialized and that x is
not initialized. If one of these conditions is not respected an exception is raised (namely,
NotInitVarException and InitLvarException, respectively). Moreover, if 1 is the empty
list, a EmptyLstException exception is raised.



It is important to notice that these methods do not modify the list on which they
are invoked: rather they build and return a new list obtained by adding/removing the
elements to/from the input list (the same will hold for sets, too).

Constructor expressions for sets are simpler than those for lists. In fact, in lists we
can distinguish between the first (the head) and the last (the tail) element of a list,
while in sets the order of elements is immaterial. Moreover, only the element insertion
method is provided since element extraction may involve a non-deterministic selection
of the element to be extracted that is better handled using set constraints (see Section
4). Let e be an Lvar expression and s be a set expression (i.e., an expression returning
a set object or a logical variable whose value is a set object). A set constructor is an
expression of the form:

s.ins(e) (element insertion)
which denotes the set obtained by adding val(e) to s (i.e., s U {wval(e)}).

Set/List insertion and extraction methods can be concatenated (left associative). In
fact these methods always return a Set/Lst object, and the returned object can be used
as the invocation object as well.

Using the insertion methods it is also possible to build unbounded partially specified
sets/lists, that is data structures with a certain number of (either known or unknown)
elements ey, ..., e, and an unknown “rest” part, represented by an uninitialized set/list
r (i.e., using the abstract notation, {ey,...,e, |7} or [e1,..., e, | r] for sets and lists,
respectively).

Example 2. Set/List element insertion and removal

Lvar nil = new Lvar(Lst.empty); // the empty list

Lst 11 = new Lst(nil.ins1(3+2).ins1(x)); // the p.s. list [z,5] (x uninit’d var.)
Lst 12 = new Lst(11l.ext1(y).insn(y)); // the p.s. list [5,z]

Set s1 = new Set(Set.empty.ins(1).ins(’a’)); // the set {’a’,1}

Set r = new Set(); // an uninitialized set

Set s2 = new Set(r.ins(1)); // the unbounded set {1|r}

Note that s2 in the above example is a partially specified set containing one element,
1, and an unknown part r; in this case, the cardinality of the denoted set has no upper
bound (the lower being 1).

Special forms of the insertion and extraction methods are provided to simplify their
usage. In particular, the method ins1A11(a), applied to a list 1, where a is an array of
elements of a type ¢, returns a list obtained from 1 by adding all elements of a as the head
elements of 1, respecting the order they have in a. Similarly, insA11(a), applied to a set
s, is used to insert more than one element at a time into s. In addition, an alternative
form is provided for specifying the value for a set or list object. When creating the object
it is possible to specify the limits I and u of an interval [, u] of integers: the elements of
the interval will be the elements of the set/list (if u < [ the set/list is empty).

A number of utility methods are also provided by classes Lvar, Lst, and Set. These
methods are used, for example, to print a set/list object, to know whether a logical
variable is initialized or not, to get the external name associated with a Lvar, Lst, or
Set object, and so on.

Logical variables, sets, and lists are used mainly in conjunction with constraints.
Constraints are addressed in more details in the next section.

4 (Set) Constraints

Basic set-theoretical operations, as well as equalities and disequalities, are dealt with
as constraints in JAVASET. The evaluation of expressions containing such operations is



carried on in the context of the current collection of active constraints C (the global con-
straint store) using domain specific constraint solvers. Those parts of these expressions,
usually involving one or more uninitialized variables, which cannot be completely solved
are added to the constraint store and will be used to narrow the set of possible values
that can be assigned to the uninitialized variables.

The approach adopted for constraint solving in JAVASET is the one developed for
CLP(SET)[8]. Logically, the constraint store is a conjunction of atomic formulae built
using basic set-theoretic operators, along with equality and disequality. Satisfiability is
checked in a set-theoretic domain, using a suitable constraint solver which tries to reduce
any conjunction of constraints to a simplified form the solved form which can be easily
tested for satisfiability. The success of this reduction process allows one to conclude the
satisfiability of the original collection of constraints. Conversely, the detection of a failure
(logically, the reduction to false) implies the unsatisfiability of the original constraints.
Solved form constraints are left in the current constraint store and passed ahead to
the new state. A successful computation, therefore, may terminate with a not empty
collection of solved form constraints in the final constraint store.

An atomic constraint in JAVASET is an expression of one of the forms:

er.op(e2) e1.0p (es, e3)
where e is either a Lvar, a Lst or a Set expression, e and e3 can be Lvar, Lst or Set
expressions, a primitive type value or any class object provided of an equal method.
op is one of a collection of predefined operators that implement basic operations on
sets, such as: equality, membership, (strict) inclusion, union, disjunction, intersection,
set difference, and, for most of them, also their negative counterparts. In particular, set
equality turns out to be dealt with as a set unification problem [9]. A constraint is the
conjunction of two or more atomic constraints vy, va,...,vp:

vi.and(vg) ... .and(v,)

Example 3. Set constraints
Let x, y, z be logical variables and r, s, and t be sets.

r.eq(s)); // equality between sets
t.union(r,s)); // t =rUs
x.eq(y) .and(x.eq(3)) .and(y.neq(z))) // x=yANx=3ANx#z

A constraint C can be added to the constraint store by calling the add method of

the Solver class
Solver.add(C)

The order in which constraints are added to the constraint store is completely im-
material. After constraints have been added to the store, one can invoke their resolution
by calling the solve method:

Solver.solve()

The solve method nondeterministically searches for a solution that satisfies all con-
straints introduced in the constraint store. If there is no solution a Failure exception
is generated. We say that the invocation of a method, calling (directly or indirectly) the
solve method, terminates with failure if its execution causes the Failure exception to
be raised; otherwise we say that it terminates with success. The default action for this
exception is the immediate termination of the current thread. The exception, however,
can be caught by the program and dealt with as preferred.

To find a solution, the constraint solver tries to reduce the atomic constraints in the
constraint store to a simplified form - called the solved form (see [8]). This reduction is
nondeterministic. Nondeterminism is handled through choice points and backtracking.
Once the constraint reduction process detects a failure, the computation backtracks to
the most recently created choice point (chronological backtracking). If no choice point
is left open the whole reduction process fails (i.e., the Failure exception is generated).



Example 4. Constraint solving
Let s be the set {x,y,z}, where x, y, and z are uninitialized logical variables, and r be the set

{1,2,3}.

Solver.add(r.eq(s)); // set unification r = s
Solver.add(x.neq(1)); /] x#1

Solver.solve(); // calling the constraint solver
x.output () ;

x.output () prints the (external) name of the variable x followed by its value (if any; otherwise,
followed by *_? ). Hence, the output generated by this code fragment is: x = 2.

The value for x is computed through backtracking; as a matter of fact, the first value
for x computed by solving r.eq(s) is (likely to be) 1, which however does not satisfy
the other constraint x.neq(1). Thus, backtracking forces the solver to find another
solution for x, namely x = 2. In this case, the conjunction of the two given constraints
is satisfied, and the invocation of the solve methods terminates successfully. If later on
a new constraint, e.g., [x] # [2], is added to the constraint store, and the constraint
solver is called again, the choice points left open by the previous call to the solver are
still open and they are explored by the new invocation.

Solver.add(Lst.empty.insl(x).neq(Lst.empty.ins1(2))); // [x] # [2]

Solver.solve();

x.output () ;

The output generated at the end of the computation of this new fragment of code is
therefore: x = 3. Note that every time the solve method is invoked it does not restart
solving the constraint from the beginning but it restart from the point reached by the
last invocation to solve.

At the end of the computation the constraint store may contain solved form con-
straints. To print these constraints, other than equality constraints, one can use the
static method showStore () of class Solver (actually this method allows to visualize the
content of the constraint store at any moment during the computation). Let us see how
the solver works on a simple example involving also negative constraints in the computed
result.

Example 5 Programming with constraints.
Check whether an element x belongs to the difference between two sets, sl and s2 (i.e., x €
s1\s2) .

public static void in_difference(Lvar x, Set sl, Set s2) throws Failure
{ Solver.add(x.in(s1));
Solver.add(x.nin(s2)); }

If the following code fragment is executed (for instance, in the main method)

in_difference(v,s,r);

x.output () ;

Solver.showStore();
and s and T are the sets {1,2} and {1,3}, respectively, and x is an uninitialized variable, the
output generated is:

x =2

Store: empty

Conversely, if s is an uninitialized set, then executing the same program fragment as above,
will produce the following output

X = _

s = {x|Set_1}

Store: x.neq(1) x.neq(3)
which is read as: s can be any set containing the element x and x must be different from 1 and
3.



The ability to solve constraints disregarding the fact logical variables occurring in
them are initialized or not allows methods involving constraints to be used in a quite
flexible way, e.g., using the same method both for testing and computing solutions This
flexibility strongly contributes to support a declarative programming style.

A convenient way to introduce more than one constraint at a time is by using the
forall method. Let x be an uninitialized variable, S a set expression which is evaluated
to an initialized set, C' a constraint containing x, and Cj the constraint obtained from
C by replacing all occurrences of x with element s of S. The statement

Solver.forall(x,S,C)
adds the constraint Cs to the constraint store, for each element s of S. Logically,
forall(x,S,C) is the so-called Restricted Universal Quantifier: Vz((z € S) — C)
(see the sample program in Section 2 for a simple use of forall).

It is common also to allow local variables yi,...,y, in C, which are created as new
for each element of the set (logically, Vz((z € S) = Jy1,...,y,(C)) thatis y1,..., Yn are
existentially quantified variables). For this purpose, JAVASET provides also the method

Solver.forall(x,S,Y,C)
where x, S, and C are the same as in the simpler forall method, while Y is a list of
uninitialized logical variables.

Example 6 Using the forall method.
Check whether all elements of a set s are pairs, i.e., they have the form {x1,x2}, for any x1
and x2.

public static void all_pairs(Set s) throws Failure
{ Lvar x1 = new Lvar();
Lvar x2 = new Lvar();
Lst Y = new Lst(Lst.empty.ins1(x2).ins1(x1));
Lvar x = new Lvar();
Solver.forall(x,s,Y,x.eq(Lst.empty.ins1(x2).ins1(x1)));
Solver.solve();
return; }

Let sample_set be the set {[1,3]1,[1,2],[2,31}. The following fragment of code tests whether
sample_set is composed only of pairs and prints a message ‘‘All pairs’’ or ‘‘Not all
pairs’’ depending on the result of the test.

boolean res = true;

try {
all_pairs(sample_set);

}

catch(Failure e)

{res = false;}
if (res) System.out.print("All pairs");
else System.out.print("Not all pairs");

Example 6 shows also how a statement, namely the call all pairs(sample_set),
can be used, in a sense, as a condition. In fact, if execution of the statement fails (i.e.,
not all elements in the given set are pairs), then an exception Failure is raised and the
associated exception handler executed. The latter can easily set a boolean variable to
be used in the next if statement. Thus, if the statement terminates with success then a
true value is returned (in res); otherwise, the statement terminates with failure and a
false value is returned. This is analogous to the use of statements as expressions found
in some languages, such as Alma-0 [1]) and SINGLETON [17].

A computation in JAVASET can be nondeterministic, though nondeterminism in
JAVASET is confined to constraint solving. Precisely, like in SINGLETON, nondeterminism



is mainly supported by set operations. As a matter of fact, the notion of nondetermin-
ism fits into that of set very naturally. Set unification and many other set operations are
inherently and naturally nondeterministic. For example, the evaluation of z € {1,2,3}
with z an uninitialized variable, nondeterministically returns one among =z = 1, z = 2,
x = 3. Since the semantics of set operations is usually well understood and quite “intu-
itive”, making nondeterministic programming the same as programming with sets can
contribute to make the (not trivial) notion of nondeterminism easier to understand and
to use.

Nondeterminism is another key feature of a programming language to support declar-
ative programming. A simple way to exploit nondeterminism in JAVASET is through the
use of the Setof method. This method allows one to explore the whole search space of
a nondeterministic computation and to collect into a set all the computed solutions for
a specified logical variable x. Then the collected set can be processed, e.g., by iterating
over all its elements using the forall method.

Example 7 All solutions.
Compute the set of all subsets (i.e., the powerset) of a given set s.

public static Set powerset(Set s) throws Failure
{Set r = new Set();
Solver.add(r.subset(s));
Solver.setof (r);
return r; }

If s is the set {’a’,’b’}, the set returned by powerset is {{},{’a’},{’b’},{’a’,’b’}}.

Finally we show the application of JAVASET to a more complex problem, the well-
known combinatorial problem of the coloring of a map.

Example 8 Coloring of a map.

Given a map of n regions r1,...,rn and a set of m colors ci,...cmy find an assignment of colors
to regions such that neighboring regions have different colors. The regions are represented by
a set of n uninitialized logical variables and the colors by a set of m constant values (e.g.,
"red","blue"}). The map is modeled by an undirected graph and it is represented as a set
whose elements are sets containing two neighboring regions. At the end of the computation each

Lvar representing a region will be initialized with one of the given color.

public static void coloring(Set regions, Set map, Set colors) throws Failure
{ Lvar x = new Lvar();
Solver.add(regions.eq(colors));
Solver.forall(x,colors, (Set.empty.ins(x)) .nin(map));
Solver.solve();
return; }

The solution uses a pure “generate & test” approach. The regions = colors constraint allows
to find a valuable assignment of colors to regions. Invocation of the forall method allows to
test whether the constraint {x} ¢ map holds for all x belonging to colors. If it holds, it means
that for no pair {ri,r;} in map, r; and r; have got the same color.

If coloring is called with regions = {r1,r2,r3}, r1, r2, r3 uninitialized logical variables,
map = {{r1,r2},{r2,r3}}, and colors = {"red","blue"}, the invocation terminates with
success, and rl, r2, 3 are initialized to "red", "blue", and "red", respectively (actually, also
the other solution which initializes r1, r2, r3 to "blue", "red", and "blue", respectively, can
be computed through backtracking, if the first computed solution turns out to cause a failure).

Note that the set of colors can be also partially specified. For ezample, if colors = {c1,"blue"},
with c1 an uninitialized variable, ezecuting coloring will generate the constraint: r1 = Lvar_1,
r2 = "blue", r3 = Lvar_1, Lvar_1 # "blue".



5 Defining new constraints

Nondeterminism in JAVASET is confined to constraint solving. One consequence of this
is that the value of a logical variable computed in a nondeterministic way (hence, within
the constraint solver), is no longer “sensible” to backtracking once it is used outside
constraint solving. For example, let us consider the following program fragment, where
we assume that s is the set {0,1}, and ¢, ¢ are two constraints:

Solver.add(x.in(s));

Solver.solve();

if (x == 0) Solver.add(ci);

else Solver.add(cy);

If, when evaluating the if condition, the value of the logical variable x is 0 then the
constraint ¢; is added to the constraint store. If, subsequently, a failure is detected,
backtracking will allow to consider a different value for x, namely 1, but the if condition
is no longer evaluated. The constraint solver will examine the constraint store again,
with the new value for x but still with constraint ¢; added to it.

The problem is caused by the fact we cannot guarantee a tight integration between
the constraint solver (which is defined in a library) and the primitive constructs of the
language. This is probably the main difference between what we called the "library”
approach and the approach based on the definition of a new language (or the extension
of an existing one). As a matter of fact the problem illustrated by the above program
fragment is easily programmed in a language such as SINGLETON where nondeterminism
and logic variables are embedded in the language.

However, JAVASET provides a solution to overcome this difficulty. The solution is
based on the possibility to introduce user-defined new constraints. Whenever a method
which the user wants to define requires some nondeterministic action embedded in a
non-trivial control structure, one can define the method as a new constraint, so that
its execution is completely performed in the context of constraint solving. JAVASET
provides a class, called NewConstraints, which is devoted to contain all definitions of
the new constraints possibly introduced by the user (actually this task would be strongly
simplified by the use of a suitable preprocessor that allows most of these details to be
hidden to the user).

Let us see how the user can define a new constraint using a simple example: a fully
nondeterministic recursive definition of the classical list concatenation operation. The
solution can be easily generalized to other cases. First of all the user has to add the
following method to the class NewConstraints:

public static StoreElem concat(Lst 11, Lst 12, Lst 13)
{ StoreElem s = new StoreElem(n,11,12,13);
return s; }
where n is an integer selected by the user and greater than 100, that will be used by the
solver to identify the new constraint. This method returns an instance of StoreElem,
that is a constraint: hence, it associates the method concat with a new constraint,
internally identified by the number n. Then the user has to add a new case block to the
user_code method of class NewConstraints as follows:

protected static void user_code(int c, StoreElem s)
{ ... switch(c)

{...

case n: concat(s); break; ... } }

Finally it is necessary to define a method concat that takes as its input the store ele-
ment s and implements the actual constraint handling procedure for the new constraint.
To exploit nondeterminism within this method, one has to adhere to some programming
conventions. Let the definition of the new method to be based in general on k& different



nondeterministic alternatives. Then the user must provide a switch statement with k
case blocks (numbered from 0 to k& — 1), one for each nondeterministic alternative as
follows:

public static void concat(StoreElem s) throws Failure
{Lst 11 = (Lst)s.argl;
Lst 12 = (Lst)s.arg2;
Lst 13 =(Lst)s.arg3;
switch (s.caseControl)

{ case 0:
add_ChoicePoint (s);
add(11.eq(Lst.empty));
add(12.eq(13));
return;

case 1:

Lvar x = new Lvar();

Lst linew = new Lst();

Lst 13new = new Lst();

add(11.eq(1l1lnew.ins1(x))); // Il = [z | lInew]
add(13.eq(13new.ins1(x))); // 13 = [z | ISnew]
add(concat (11lnew,12,13new)); // concat(lInew,l2,l3new)
return; } }

The control expression of the switch statement is the caseControl attribute of the
constraint s associated with concat (default value: 0). Each case block, but the last
one, creates a choice point and adds it to the stack of the alternatives by executing the
statement add_ChoicePoint(s); then the remaining code of the case block adds the
constraints necessary to compute one of the possible solutions.

Execution of the statement

Solver.add(NewConstraint.concat(11,12,13)

causes the user-defined constraint concat to be added to the current constraint store. If
11is [1,2,3],12is [4,5], 13 is an uninitialized list, a subsequent call to Solver.solve()
will set 13 equal to [1,2,3,4,5].

Note that concat can be used both to check if a given concatenation of lists holds
and to build any of the three lists, starting from any of the other two (like in the usual
well-known definition of the append predicate in Prolog).

6 Conclusions and future work

We have presented the main features of the JAVASET library and we have shown how
they can be used to write programs that exhibit a quite good declarative reading, while
maintaining all the features of conventional Java programs. In particular we have de-
scribed the (set) constraint handling facilities supported by our library and we have
shown how constraint solving can be accomplished, and how it interacts with the usual
notion of program computation. Furthermore we have shown how to exploit nondeter-
minism, possibly by introducing new used-defined constraints.

JAVASET is fully implemented in Java and can be obtained—as a . jar file (172KB)—
from the authors.

As a future work the constraint solving capabilities of JAVASET could be strongly
enhanced by enlarging the constraint domain from that of sets to that of finite domains.
Following [6], this enhancement could be obtained by integrating an existing constraint
solver for finite domains, possibly written in Java, with the JAVASET constraint solver
over sets. As shown in [6] this would allow us to have, in many cases, the efficiency of
the finite domain solvers, while maintaining the expressive power and flexibility of the



set constraint solvers (which in turn is inherited from CLP(SET)). On a different side,
another concrete improvement could be obtained by using flexible preprocessing tools
for the Java language that would allow us to develop suitable syntax extensions that
would make it simpler and more natural using the JAVASET facilities.
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