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Abstract. For a given semantics. two logic programs /I1 and Ih can be said to 

be equivalent if they have the same mtended models and strongly equivalent if 

for any program X, fl1 U X and II2 U X are equivalent. Eiter and fink have 

recently studied and characterised under answer set semantics a further, related 

property of uniform equivalence, where the extens1on X is required to be a set 

of atoms. We extend their main results to propositional theories in equilibrium 

logic and describe a tableaux proof system for checking the property of uniform 

equivalence. We also show that no new forms of equivalence are obtained by 

varying the log~ cal form of expressions in the extension X . 

1 Introduction 

Concepts of program equivalence are important in both the theory and practice of logic 

programming. 1n terms of theory, knowing in general terms when logic programs are 

equivalent provides important information about their mathematical properties. In prac­

tical terms, knowing that two programs are equivalent may mean irt certain contexts that 

one can be replaced by the other without loss. In answer set programming (ASP), the 

property of having the same answer sets can be viewed as the simplest kind of equiva­

lence. Two programs with this property respond to queries in the same way: they have 

the same credulous and the same skeptical consequences. But they need not be inter­

substitutable without loss in all contexts. To guarantee this property in the most general 

case, a notion of strong equivalence is needed. Two programs ll1 and lf2 are said to 

be strongly equivalent iff for any program X ,J11 U X and fl2 U X are equivalent, ie 

have the same answer sets. Strong equivalence in ASP is a powerful property that turns 

out to be easier to verify than ordinary equivalence. Lifschitz, Pearce and Valverde [10] 

showed that in answer set semantics programs are strongly equivalent if and only if 

they are equivalent in a certain non-classical logic called here-and-there (with strong 

negation), which we denote here by N 5 •3 In the case of ordinary equivalence one has 

the harder task to verify that IT l and ll2 have the same minimal N 5 models of a special 

type, called equilibrium models, introduced in [ 11]. They correspond to answer sets. 

*Partially supponed by Junta de Andalucia project TlC-11 5. 
3 N~ is also a maximal logic with this property. Other logics capturing strong equivalence are 

described in [8]. 
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Besides strong equiv-dlence one may consider weaker concepts that still permit one 
program to be substituted for another in certain well-defined settings. One such notion is 
that of uniform or u-equivalence, defined as above but restricted to the case where X is 
a set of atoms. This concept is of interest when one is dealing with a fixed set of rules, or 
intensional knowledge base, and a varying set of facts or extens1onal knowledge compo­
nent. It may also be relevant in other applications of ASP, eg in planning and diagnosis 
where there is a fixed background theory, and plans (resp. diagnostic explanations) are 
sequences (resp. sets) of atomic propositions. Uniform equivalent background theories 
will generate equivalent plans (resp. explanations). 

The u-equivalence of logic programs under answer set semantics bas recently been 
studied by Eitcr and Fink [3]. for finite programs they show that u-equivalcncc can be 
neatiy characterised in terms of certain maximal models. A weaker semantic property 
is demonstrated for the infinite case where such maximal models are not guaranteed to 
exist. They also look at several special classes of programs, such as Hom and head­
cycle free programs, and provide complexity results for the general and several special 
cases. Here we extend the work of Eiter and Fink in several directions. First, their 
cbardclerisations of uniform equivalence are proved for disjunctive progrdms using a 
notion of SE-model, introduced in [13]. They observe that this is essentially equivalent 
to the models of here-and-there logic and that the results generalise to programs with 
strong negation and even nested expressions. We shall prove the main characterisation 
results directly for theories in equilibrium logic using here-and-there models. This sim­
plifies the proofs, generalises the results to the full propositional language and yields 
by the well-known properties of equilibrium logic the corresponding results for pro­
gTams with strong negation and nested expressions without further ado. In the case of 
the characterisation applicable to infinite theories (Theorem 4 below), we strengthen the 
results slightly by simplifying part of the sufficiency condition. Secondly, we consider 
the question whether in the definition of uniform equivalence placing other restrictions 
on the logical form of sentences in the extension X yields new forms of equivalence 
lying ' between' uniform and strong equivalence. The answer is no. lf rules involv­
ing implication are permitted in X, then strong equivalence is the appropriate concept. 
Otherwise, for implication-free formulas of any other logical type, the equivalence in 
question is equivalent to uniform. Thirdly, we consider a proof system for checking the 
property of uniform equivalence. For this, since we express equivalence using ordinary 
logical models in N 5, we can adapt a tableau proof system for N 5 that was studied in 
an earlier paper [ 12]. 

In [3] several examples are given oflogic programs that are uniform but not strongly 
equivalent. A feature of equilibrium logic is that it allows one to represent programs 
with conditional rules, ie expressions of the form a -> ({3-+ 1) or (a-+ {3)-+ I· It is 
interesting to consider when such rules are equivalent to ordinary programs with nested 
expressions, eg when can one replace (p-+ q) -+ r by ( -..p V q) -+ r. [n general the last 
two expressions are u-equivalent but not strongly equivalent. In 4.2 we consider some 
cases of this kind. 
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2 Equilibrium Logic 

We work throughout in the nonclassical logic of here-and-there with srrong negation 

N 5 and its nonmonotonic extension, equilibrium logic [ I 1 ], which generalises answer 

set semantics for logic programs to arbitrary propositional theories. see eg [10]. We 

give only a very brief overview of equilibrium logic here. For more detai ls the reader is 

referred to [1 1, 10, 12] and the logic texts cited below. 

Formulas of N 5 are built-up in the usual way using the logical constants: /\, V, 

~. -., "'• standing respectively for conjunction, disjunction, implication, weak (or intu­

itionistic) negation and strong negation. The axioms and rules of inference for N 5 are 

those ofintuitionistic logic (see eg [141) together with: 

I . the axiom schema (-.a~ (3) ~ ((((3 ~a) --+ (3)-+ /3), which characterises the 

3-valued here-and-there logic ofHeyting [7], and Godel [4) (hence it is sometimes 

known as GOdel's 3-valued logic). 
2. the following axiom schemata involving strong negation taken from the calculus of 

Vorob'ev [15, 16] (where 'a+-> fJ' abbreviates (a-+ /3) 1\ (/3 ~a)): 

Nl. "'(a-+ (3) +-> <.\' 1\ "'.6 
N3. (~a V /3) +-> "'a 1\ "'/3 
NS . .-v-.a +-> a 

N2. "'(a 1\ /3) +-> "'a V "'fJ 
N4. "'"'a +-> a 
N6. ( for atomic a) "'a --+ -.a 

The model theory of N 5 is based on the usual Kripke semantics for Nelson's construc­

tive logic N(see eg. [5, 14]), but N 5 is complete for Kripke frames F = (W, 5) (where 

as usual W is the set of point or worlds and 5 is a partial-ordering on W) having exactly 

two worlds say h ('here') and I ('there') with h 5 t. As usual a model is a frame to­

gether with an assignment i that associates to each element of W a set of literals,4 such 

that ifw 5 w' then i(w) ~ i(w' ). An assignment is then extended inductively to all 

formulas via the usual rules for conjunction , disjunction, implication and (weak) nega­

tion in intuitionis:tic logic together with the following rules governing strongly negated 

formulas: 

"'( cp 1\ TjJ) E ·£( w) iff "'<? E i( w) or -1/1 E i(w) 
"' ('P V 1/1) E i(w) iff "''P E i(w) and "'lP E i(w) 
"'('P-+ 1/1) E i(w) iff cp E i(w) and "''1/J E i(w) 
,...,-,cp E i(w)_i fT "'"''P E i(w) iff <p E i(w) 

It is convenient to represent an N 5-model as an ordered pair {H, T) of sets of literals, 

where H = i(h) and T = i(t) under a suitable assignment i. By h. 5 t, it follows 

that H ~ T. Again, by extending i inductively we know what it means for an arbitrary 

formula t.p to be rrue in a model (H, T). 
A formula cp is true in a here-and-there model M = (H, T) in symbols M I= cp, if 

it. is true at each world in M. A formula <pis said to be valid in N 5, in symbols I= t.p, 

if it is true in all here-and-there models. Logical consequence for N 5 is understood as 

follows: cp is said to be an N s-consequence of a set fl offormulas, written I1 I= <p, iff 

4 We usc the term 'literal ' to denote an atom, or atom prefixed by strong negation. 
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for all models M and any world wE M,M, w l= fl implies M , w I= rp. Equivalently 
this can be ex_pressed by saying that rp is true in all models of fl. Further properties of 
N 5 are studied in (9]. 

Equilibrium models are special kinds of minimal N 5 Kripke models. We first define 
a partial ordering ~ on N 5 models that will be used both to characterise the equilibrium 
property as well as the property of uniform equivalence. 

Definition I. Given any two models (H, T), (H', T'). we set (H, T) ~ (H', T') ffT = 
T' andH ~ H'. 

Definition 2. Let IT be a set ofN sformulas and (H ,_.T) a model of II. 

1. (H, T) is said to be total if H = T. 
2. (H, T) is said to be an equil ibrium model if it is minimal under ~ among models 

of IT, and il is rota!. 

ln other words a model (H, T) of II is in equilibrium if it is total and there is no model 
(H' , T ) of 11 with H' c H. Equilibrium logic is the logic determined by the equi­
librium models of a theory. lt generalises answer set semantics in the following sense. 
For all the usual classes of logic programs, including normal, extended, disjunctive and 
nested programs, equilibrium models correspond to answer sets [II, I 0]. The 'transla­
tion' from the syntax of programs to N 5 propositional formulas is the trivial one, eg. a 
ground rule of an (extended) disjunctive program of the form 

where the L; and K1 are literals corresponds to the N 5 sentence 

A set of N 5 sentences is called a the01y . Two theories are equivalent if they have the 
same equWbrium models. 

3 Uni£orm Equivalence 

We recall the definition of uniform equivalence and give a new proof of Theorem 3 of 
[3] for propositional theories in equilibrium logic. Additional motivation for the study 
of unj form equivalence and references to previous work is given in [3). 

Defin ition 3. Two theories II1 and II2 are said to be uniform equiva.lent, or u-equivalent 
for short, iff for any (empty or non-empty) set X of literals, ll1 U X and Il2 U X are 
equivalent, ie have the same equilibrium models. 

Note that if the theories are logic programs, this means they have the same answer sets. 
We begin with some simple terminology. A model {H . T) is said to be incomplete 

if it is not total, ie. if H c T. A model (H. T) of a theory ll is said to be maximal 
incomplete (or j ust maximal) if it is incomplete and is maximal among models of II 
under the ordering ~- ln other words a model (H. T ) of IT is maximal if for any model 
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(H', T) of n , if H c H' then H' = T. Tt is clear that if a theory II is finite and bas 

an incomplete model (H, T), then it has a maximal incomplete model (H' , T ) such 

that H s:;; H 1
• However maximal models need not exist in the case that II is an infinite 

theory. The following is straightforward. 

Lemma 1. If two theories 1[1 and 172 are u-equivalenL. Lhen they have the same total 

models. 

Note that theories with the same total models are equivalent in classical logic with 

strong negation (see Gurevich [5]). 

Lemma 2. If two finite theories II 1 and .II2 have the same total models and the same 

maximal incomplete models, then Lhey are equivalent. 

Proof. Equilibrium models are total models with no incomplete 'submodels'. 

Lemma 3. If two finite theories 111 and lh have the same maximal and total models 

then they are uniform equivalent. 

Proof. From Lemma 2 we have seen that theories 1[1 and IT2 with the same total and 

maximal models are equivalent. It remains to show that they are also uniform equiva­

lent Thus, assume that Tit and fl2 have the same total and maximal models and are 

therefore equivalent. Suppose for the contradiction that they are not u-equivalent. Then 

for some set X of literals, JT1 U X and fl2 U X are not equivalent, say the former has 

an equilibrium model (T, T) that is not an equilibrium model of 112 U X. Since the IJ1 

and II2 have the same total models, clearly {T , T) f= ll2 U X. By assumption there is 

a model {H , T) of IT2 U X with H c T. Clearly X s; H. Keeping T fixed, extend H 

to a maximal incomplete model (H', T ) of I/2 in T . It is evident that (H'. T } is not a 

maximal model (or even model) of fl1 . lfit were, since X s; H', it wou.ld be an in­

complete model of fl 1 U X , contradicting the assumption that (T. T) is in equilibrium. 

Consequently,lftwo theories are not u-equivalent, they differ on some maximal model, 

contradicting the initial assumption. 0 

Lemma 4. If two finite theories fl 1 and' lh are uniform equivalent, then they have the 

same maximal and total models. 

Proof. By Lemma I, u-equivalent theories have the same total models. We will show 

that if they differ on maximal models, then they are not u-equivalent. Thus, suppose 

that fl1 and fl2 differ on some maximal incomplete model. Suppose for instance that 

lh has a maximal incomplete model (H , T) that is not a maximal incomplete model of 

IT2 . We distinguish two cases as follows. Case (i): there is a model {H', T) of fl2 with 

H ~ H'. Case (ii): there is no such model of ll2. In each case we define non-equivalent 

extensions of 1T1 and II2-
Case (i). Since by assumption (H, T) is not a maximal model of Ih, we can choose 

H' such that H c H 1
• Now select any element A E H 1

- H . Set X = H U {A}. 

Then clearly (T, T) f= I/1 U X and for any model (J , T } of lh U X, clearly H C J. 

Hence it fo1lows from the maximality of {H , T) among models of lit that {T, T) must 

be an equilibrium model of TI1 U X. But by inspection (H', T ) is a model of fl2 U X 
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and so (T1 T} is not an equilibrium model of ll2 U X, showing that J11 and ll2 are not u-equivalent. 
Case (ii). There is no model (H ', T} of fl2 with H ~ H'. In this case set X = H and consider JJ1 u X and fl"2 U X. Since fl"1 and ll2 have the same total models it is clear that (TIT) F Ilz u X. Moreover it is an equilibrium model of n2 u X since, by assumption, there is no incomplete model (H', T) of IJ2 with H C H'. But clearly (T.T} is not an equilibrium model of Jl1 U X, since (H 1 T } I= IT1 and hence (H,T) F Ift u H. 

0 So we have shown Theorem 3 of[3] for arbitrary, finite theories: 
Theorem 1. Tivo finite theories are uniform equivalent if and only if they have the same total and maximal incomplete models. -

3.1 An extension 

u-equivalence is typically of interest when one has a fixed set of program rules or a de­ductive database (the intensional part) and a variable set of facts or atomic propositions (or their strong negations) changing over time (the extensional part) . Now suppose we allow the extensional part to contain other kinds of formulas, including say disjunctions and integrity constraints. What kinds of equivalences are obtained in such cases? We know from [ 10] that adding even the simplest kinds of proper rules with implication, of the form Pi _., p1 , brings us to the full case of strong equivalence. The next 'strongest ' case would be to allow arbitrary (extended) boolean formulas in {A. V 1 • , "') but with­out implication. 

Definition 4. Two theories fl1 and II 2 are unifom1 equivalent in the extended sense, or 1j+ -equivalent, ijJ for any (empty or non-empty) set X of (implication-free) fonnulas in ( 1\, V, • , "'), II1 U X and ll2 U X are equivalent, ie have the same equilibrium models. 
Lt turns out that the two notions are equivalent To see this we need a simple lemma whose proof is left to the reader. 

Lemma 5. Let t.p be any formula in (A, V, --., "'). If (H , T) f= t.p and H ~ H' s;; T then (H' , T ) f= t.p. 

T heorem 2. Two finite theories are u+ -equivalent if and only if they are u-equivalent. 
Proof. By definition, u-equivalence is a special case of u+ -equivalence. In particular if IT1 UX and JJ2UX are equivalent for all X comprising boolean formulas, then they are c learly equivalent for all literal X . So u-'--equivalence implies u-equivalence. For the other direction, suppose Il1 and fl2 are u-equivalent, then by Lemma 4, they have the same maximal and total models. We show that this implies their u+ -equivalence. We proceed exaclly as in the proof of Lemma 3. Bul for the contradiction we now suppose that for some set X of boolean formulas, T1 1 U X and JJ2 U X are not equivalent, say that (T , T} is an equilibrium model of Ilt U X but not of JJ2 U X . Again since they have the same total models we know that (T, T ) f= Il2 U X , but since it is not an equilibriwn model, there is a model (H. T ) of II 2 U X with H C T. Let ( H' 1 T ) be any maximal model of Il"l such that H c H'. We need only check that (H', T} f= X. 
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But this follows immediately from Lemma 5 above. So, as before, (H' , T ) li= II1• since 

(T, T) is an equilibrium model of [[1 U X. 0 

This result shows that on finite programs uniform and strong equivalence arc the 

only concepts of their kind in ASP. In particular, varying the logical form of formu­

las permitted in the extension X of a program does not produce any new notion of 

equivalence: strong equivalence is the appropriate concept when proper rules contain­

ing implication are permitted, while all other cases are covered by uniform equivalence. 

4 Many-valued semantics for N 5 

The Kripke semantics for N 5 logic can be easily characterised using a many-valued ap­

proach, specifically with a five-valued logic. In this section we define thls interpretation 

and then describe a five-valued tableau system to check inference. 

The set of truth values in the many-valued characterisation is 5 = { -2, -1, 0, 1, 2} 

and 2 is the designated value. The connectives are interpreted as follows: 1\ is the mini­

mum function, V is the maximum function, ~x = - x, 

ifeither x $ 0or x $ y 

otherwise 
and -.x = {2 

-X 

ifx :5 0 
otherwise 

Any N 5 model cY as a truth-value assignment can trivially be converted into a Kripke 

model (H, T}, and vice versa. For example, if cY is an assignment and p is a proposi­

tional variable, then the corresponding Kripke model, denoted by M ,n is determined 

by the equivalences: 

e7(p) = 2 iff p E H 
a(p) = 1 iff pET, p ~ H 
cY(p) = 0 iff p ~ T,~p ~ T 

a (p) = -1 iff ~ E T,~¢H 

a(p) = -2 iff ""'P E H 

The many-valued semantics and the Kripke semantics for N 5 are equivalent. In other 

words, if II is a set of formulas in N 5 and 1/; is a formula, then II I= ,P ijJ for every 

assignment cY in N 5 , if cY(cp) = 2 for every cp E II, then cY(W) = 2. Note too that 

assignments or truth-value interpretations can also be considered partially ordered by 

the :9 relation. We then say for example that an assignment cY is greater than or equal to 

an assignment -r, if M .- :9 M u. 

4.1 Tableau systems for N 5 

In [ 12] we introduced tableaux systems to study several properties in N 5. Specifically, 

one system to check validity, another one to generate total models and another system 

based on auxiliary tableaux to check the equilibrium property for a specific model.5 

The systems are describe using signed-formulas, following the approach of [6]. The 

fom1ulas in the tableau systems are labelled with sets of truth values: S:cp, S C 5; an 

assignment cY in N 5 is a model of S:cp if a(cp) E S. The initial tableau determines the 

5 Note that the tableaux system for N 5 is already adequate for checking strong equivalence. 
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goal of the system; to study the satisfiabi lity of a set of formulas { rp1 , ... , 'Pn} and 

generate its models we use the following: 

{ 

{2_J,:<p. 1 
Initial tableau for satisfiability 

{2}:tpn 

So we look for assignments, a such that u( IPi) = 2 for all i. The expansion rules 

are common for every system and they must comply with the following property: a 

model for any branch must be a model for the initial tableau and every model of the 

initial tableau is a model of some branch. We show the rules for the connective -+ in 

Figure I , the other connectives, /\, V, "' and ..., are regular connectives, and the standard 

expansion rules can be applied [6]. 

I. lfT is a tableau and T' is the tree obtained from T applying one of the expansion 

rules, then T' is a tableau. As usual in tableau systems for propositional logics, if 

a formula can be used to expand the tableau, then the tableau is expanded in every 

branch below the formu.la using the corresponding rule and the formula used to 

expand is marked and is no longer used. 

2. A branch B in a tableau Tis called closed if it contains a variable p with two signs, 

S:p, S':p, such that S n S' = 0, that is, thc branch is unsatisfiable. 

3. A branch Bin a tableau Tis called .finished if the non-marked formulas are labelled 

propositional variables, signed literals. The branch is called open if it is non-closed 

and finished: in this case every model of the set of signed literals is a model of the 

initial set of formulas. 
4. A tableau T is called closed if every branch is closed; in this case tbe iniLial set of 

formulas is unsatisfiable. The tableau is open if it has an open branch, (ie if it is 

non-closed). And it is terminated if every branch is either closed or open. 

{2}:\0 ...... 1/J {-2,- I ,O,l}:ip ~ '1/J 
{1,2}:\0 {2}:\0 {-2,- l ,O):!p {2}:'l/J { -2, - l,0,1}:!p 

{ 1.2}:1/1 ( - 2,-t ,opp {-2.- t,O,I}:vJ 

{L,2}:<p -+1/J 
{ -2, - l ,O}:<pl {1 ,2}:VJ 

{ - 2, - 1 }:\0 -. 1/1 
{1,2}:rp 

{- 2,-l}:'l/1 

{ -2,- l ,O}:<p-+ 1/J 
{ 1 ,2}:\0 

( - 2, -l,O}:'l/J 

{ - 1,0,1, 2}:\0 -+ 1/1 
{ -2,-1,0}:101 { -1 ,0.1 ,2}:1/J 

(0,1 ,2}:!p """' 1/! 
c - 2, - l,o}:\OI{o,1,2J:'l/l 

{-2}:\0-+ 1/J 
{1,2}.tp 
( -2}:1/1 

Fig. I. Tableau expansion rules in N 0 for -+ 

!n the system, we look for non-closed terrninaLed tableaux, that allows us to generate 

atJ the models of the initial set of formulas. 

Theor em 3. Let T be a non-closed terminated tableau for II = { SO!t ... , IPn}. Then, 

17 is a model of II if and only if some branch ofT is satisfiable by u. 
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4.2 Uniform equivalence 

In the tableaux system for checking u+ -equivalence lhe following characterisation will 

be used. It is important to recall that it is valid also for infinite theories. 

Theorem 4. Two theories II1 and II2 with the same total models are u+ -equivalent if 
and only if the following conditions hold: 

(a) !f(H. T) is an incomplete model of If1 then there exists H' such that H f H' c T 

and (H', T) is a model of II2. 
(b) If (H, T) is an incomplete model of fl2 then there exists H' such that H f H' c T 

and (H', T ) is a model of II1• 

Proof: (<=)Assume that conditions (a) and (b) hold and II1 and fl2 are notu+ -equivalent; 

let us assume that there exists a set of implication-free formulas, X , and an incom­

plete interpretation (H , T ) such that (T , T ) is an equilibrium model of Il1 U X and 

(H, T ) f=. II2 U X . Obviously, (H , T ) f=. II2 and (H , T) != X and, by condition (b), 

there exists H' such that H f H' C T and (H' ,T) f= 1I1 . Moreover, by lemma 5, 

{H', T ) f=. X and thus (H' , T ) l= Il1 U X. contradicting the equilibrium property of 

(T ,T). 
(:;.)Assume that II1 and II2 are u + -equivalenl. We show (a); the prooffor (b) is 

similar. Let H and T be such lhat H C T and (H , T ) f= II1 and assume that for 

every H' such that H !;; H' C T we have (H ', 1') ~ fl2. Obviously, (T , T ) l= H, 

(T, T) I= Ih, thus (T, T) I= n2, and (T, T) F n2 u H. Moreover, every model of H 

must be between (H , T ) and (T , T ) and none of them is a model of II2; so,lhere is no 

model for Il2 U H less than (T , T } and therefore this is in equilibrium. Since II1 and 

fl2 are ·u+-equivalent, (T, T) is also an equilibrium model of fl1 U H, contradicting 

that (H, T } l= Ih U H. D 

This result is given for the case of disjunctive logic programs as Theorem I of[3]; 

note however that they state the conditions in (a) and (b) as ' iff' rather than "if-then' 

conditions. 

Auxiliary tableaux fo r u+ -equivalen.ce checking An algorithm for u+ -equivalence 

checking is sketched as follows 

I. The models of Ift and II2 are generat.ed using the tableaux method in section 4.1. 

2. rr either some total model of II1 is not a model of JT2 or some total model of IJ2 is 

not a model of fl 1, then fl 1 and fl2 are not u+ -equivalent. 

3. l f II1 and II2 have the..same total models, then we check if every incomplete model 

of fl1 has a greater interpretation that is a model for JT2, and also if every incom­

plete model of Jl2 has a greater interpretation that is a model for Jl1. For lhis we 

use auxil iary tableaux that are constructed for II1 and every incomplete model of 

Jl2, and for II2 and every incomplete model of Ih. 

The goal of the auxiliary tableau for a theory IT and an interpretation u is to check 

if there is a model for II greater than u and so the initial tableau is the same but we 

need to add a new expansion rule to those introduced in section 4.1. 

S:p 
(S nw,.(p)):p 
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where w.,. is defined by: w.,.(p) = {11(p)} if cr(p) E { - 2,0, 2}, w,.(p) = { -2, -1} if 
cr(p) = - 1 and w,(p) = { l , 2} if cr{p) = 1. With thls new rule we restrict the admisible 
models for a branch to those that are greater than cr. Note that a new situation can arise in 
these auxiliary tableaux. After applying the new rule, the signed literal 0:p can appear; 
this literal is trivially unsatisfiable and the branch containing it is immediately closed. 
Thus we have the following property. 

T heorem 5. Given a theory IT and an assignment cr, there exists a model of fl greater 
than cr if and only if there is an open tableau for (fl , cr). 

Exam ple: We are going to check 
that 1P1 = ,. --+ (-.p V q) and 
tpz = • r Y (p -+ q) are u+­
equivalent. The tableaux on the 
right allow us to generate the 
models of tp1 and tpz. 

Comparing the sets of mod­
els, it is easy to conclude that 
the total models are the same 
for both formulas and we ob­
tain two special models, cr and 
r , defined as follows: u(p) = 
2, u(q) = 1, u(r) = 1, r(p) = 
1, r(q) = 1, r(r) = 2; or, 
equivalently, cr = ( {p} , {p.q, r} ) , 
r = ({r}, {p.q, r}). 

(2}:('r -+ (-.pVq)) .l 

{-2,- l ,U}:T (2}: ( -.p v q) ,/ 

{2}:(-.p) ./ {2}:q { 1,2}: (-.p v q)./ 

{ - 2.-I,O} :p {1,2}: (-.p) ./ {1 ,2}:Q 

{ -2,-l,O}:p 

{2): (-.r V (p ~ q))./ 

{2} : (~·r) ./ {2}: (p ..... q) ,/ 

{ - 2,-1,0} :'1' ( -2,-l,O) : p {2):q {- 2, - I ,O, l} :p 

{1 ,2} :q 

These interpretations verify: u I= <p1 , -r I= <pz, cr ~ <pz, r ~ cp1 . Thus, <p1 and 
<p2 are not strongly equivalent, however they are uniform equivalent To see this we 
construct the auxiliary tableaux for (<pt, r ) and for (cp2,u). In the previous tableaux for 
cp1 we apply the rules 

S:p S :q S:r 
(S n {1 , 2}):p (S n {1, 2} ):q (S n {2}):r 

but the resulting auxiliary tableaux for (<p1 , r) remains open 

(2}:(r-. (-.pv q)) ./ 

{2}: ( -.p v q) ,/ { - 2 ,-I,O,I} :r 

0:r 
~ 

{2}: (~p) ,/ {2}:q {1,2}:(-.p v q) ,/ 

{ -2,-l,D}: p ./ 

0 :p 
~ 

{ 2, l.O}:p ./ 

0:p 
~ 

{1,2}:q 
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For ('P2, u) the auxiliary tableau also remains open: 

{-2,-l,O): r .l 

0:r 
X 

{2}· (--.t' v (p ~ q)).l 

{2}: (p --+ q) .I 

{ - 2, l ,O}:p .f 

0:p 
X 

{2}:q { -2. - l ,O,l} :p ./ 

{ 1,2) :9 

0:p 
X 

Similar examples are easy to generate. For instance, as mentioned in the introduc­

tion, one can readily verify that a rule such as (p ~ q) ~ r with a conditional 'body' is 

uniform equivalent to the ordinary rule (-.p V q) ~ r. In [3) the complexity of uniform 

equivalence checking is studied. For the restriction to disjunctive programs the con­

clusion is that the problem is II( -complete. Our procedure based on tableau systems 

allow us to concluded that the problem for general theories is also TT f -hard, because 

the generation of models is coNP-hard and the maximality checking (the oracle) is N'P­

hard. Therefore, the problem of uniform equivalence checking for general theories is 

also JJ f -complete. 

5 Conclusions and Futun Work 

The uniform equivalence of logic programs is an important property lhat may, in spe­

cific contexts, allow one program to be substituted by another, perhaps syntactically 

simpler, program. In the general case, however, it is a harder property to check than 

strong equivalence. Here we have outlined a proof system for verifying uniform equiv­

alence lhat applies to general propositional theories and consequently to any selected 

subclass of logic programs. The system is based on a semantical characterisation of 

uniform equivalence. similar to tbat of Eiter and Fink [3], but formulated for general 

propositional theories in terms of ordinary models in the logic N 5 of here-and-there 

with strong negation. As a by-product we were able to show that varying the logical 

form of formulas in the program extensions does not change the properties of uniform 

equivalence, and hence there arc no other types of equivalence of this kind situated 

'between' uniform and strong equivalence. 
We already remarked that uniform equivalence may be relevant in application areas 

of answer set progTamming, such as diagnosis and planning, where abductive methods 

are used. It is clear lhat if all and only atoms are permjtted as abducibles, then uni­

form equivalent programs have the same (abductive) explanatory power, since every 

abductive explanation in one program is an equivalent explanation in the other.6 Our 

results show that this is still the case when abducibles are allowed to be any implication­

free formulas. However there appears to be a useful concept of abductive equivalence 

weaker than uniform equivalence. Two programs Ih and [[2 would be equivalent in 

this weaker sense if for any X there exists a Y such that Jl1 U X and JI2 U Yare equiv­

alent, where X , Y are suitably restricted! (but possibly difTerent) sets of formulas (eg 

6 We are assuming here the absence of additional syntactic restrictions such as minimality con­

ditions. 
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literals). lt remains to be seen whether this concept is genuinely weaker and whether it 
can be characterised in simple, semantic terms. 

Efficiency issues also arise from our basic algorithms. The exhaustive generation of 
models can be computationally hard; in the previous example, each formula has I ll 
distinct models, though ultimately we only need to manipulate two models. So, further 
refinements of the algorithm remain be investigated in the future [2, 1]. 
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