
An Ordered Choice Logic Programming Front-End for
Answer Set Solvers

Marina De Vos?

Department of Computer Science
University of Bath

Bath, United Kingdom
mdv@bath.ac.uk

Abstract. Ordered Choice Logic Programming (OCLP) allows for preference-
based decision-making with multiple alternatives without the burden of any form
of negation. This complete absence of negation does not weaken the language as
both forms (classical and as-failure) can be intuitively simulated in the language.
The semantics of the language is based on the preference between alternatives,
yielding both a skeptical and a credulous approach. In this paper we demon-
strate how OCLPs can be translated to semi-negative logic programs such that,
depending on the transformation, the answer sets of the latter correspond with the
skeptical or credulous answer sets of the former. By providing such a mapping,
we have a mechanism for implementing OCLP using an answer set solver like
smodels or dlv.

1 Introduction

Examining human reasoning, we find that people often use preference, order or defaults
for making decisions: “I prefer this dish”, “This color goes better with the interior”,
“This item costs more”, “In general, the human heart is positioned at the left”. When
faced with conflicting information, one tends to make decisions that prefer an alter-
native corresponding to more reliable, more complete, more preferred or more specific
information. When modeling knowledge or non-monotonic reasoning via computer pro-
grams, it is only natural to incorporate such mechanisms.

In recent years several proposals for the explicit representation of preference in logic
programming formalisms have been put forward. [11, 10] are just two examples.

Systems that support preferences find applications in various domains such as law,
object orientation, scheduling, model based diagnosis and configuration tasks. However,
most approaches use preferences only when the models have already been computed,
i.e. decisions have already been made, or only support preferences between rules with
opposite (contradictory) consequences, thus statically limiting the number of alterna-
tives of a decision.

? This work was partially funded by the Information Society Technologies programme of the
European Commission, Future and Emerging technologies under the IST-2001-37004 WASP
project.

In [8], we proposed a formalism, called ordered choice logic programming, that en-
ables one to dynamically reason about situation-dependent decisions involving multiple
alternatives. The dynamics of this system is demonstrated by the following example.

Example 1. Buying a laptop computer involves a compromise between what is desir-
able and what is affordable. Take, for example, the choice between a CD, CDRW or
DVD drive. The CD is the cheaper option. On the other hand, for a laptop, a DVD drive
may be more useful than a CD writer. If the budget is large enough, one could even buy
two of the devices. The above information leads one to consider two possible situations.

– With a smaller budget, a DVD-player is indicated, while
– with a larger budget, one can order both a DVD-player and a CD-writer.

To allow this kind of reasoning, a program consists of a (strict) partially ordered set
of components containing choice rules (rules with exclusive disjunction in the head).
Information flows from less specific components to the more preferred ones until a con-
flict among alternatives arises, in which case the most specific one will be favored. The
situation becomes less clear when two alternatives are equally valued or are unrelated.
The decision in this case is very situation dependent: a doctor having a choice between
two equally effective cures has to make a decision, while you better remain indecisive
when two of your friends have an argument! To allow both types of intuitive reasoning,
[8] introduces both a credulous and skeptical semantics.

OCLP provides an elegant and intuitive way of representing and dealing with de-
cisions. People with little or no experience with non-monotonic reasoning can easily
relate to it, due to the absence of negation. This absence of negation does not restrict
the language in any way, as both types of negation (classic and as-failure) can easily be
simulated ([8]).

In computer science, having a nice theory alone is not enough; one also needs to be
able to apply it. The aim of this paper is to provide the theoretical foundations for it.

In this paper, we investigate the possibility for building an OCLP front-end for an-
swer set solvers. Smodels ([12]), developed at Helsinki University of Technology, and
dlv ([17]), created at the Technical University of Vienna and the University of Calabria
are currently the most popular ones.

The remainder of this paper is organized as follows: we continue in Section2 with
short overview of the basic information concerning choice logic programming, the lan-
guage behind OCLP. Section 3 focuses on the introduction of OCLP with its skepti-
cal and credulous answer set semantics. Section 4 deals with a mapping of OCLP to
semi-negative logic programs allowing answer set solvers to work with OCLP. These
mappings, one for each semantics, can then serve as the foundations on which we build
the OCLP front-end. We end this paper with a discussion on the relations to other ap-
proaches (Section 5) and directions for future research (Section 6).

2 Choice Logic Programming

Choice logic programs [7] represent decisions by interpreting the head of a rule as an
exclusive choice between alternatives.

Formally, a Choice Logic Program [7], CLP for short, is a countable set of rules
of the form A ← B where A and B are finite sets of ground atoms. Intuitively, atoms
in A are assumed to be xor’ed together while B is read as a conjunction (note that A

may be empty, i.e. constraints are allowed). The set A is called the head of the rule
r, denoted Hr, while B is its body, denoted Br. In examples, we use “⊕” to denote
exclusive disjunction, while “,” is used to denote conjunction.

The Herbrand base of a CLP P , denoted BP , is the set of all atoms that appear in
P . An interpretation1 is a subset of BP .

A rule r in a CLP is said to be applicable w.r.t. an interpretation I if Br ⊆ I .
Since we are modeling choice, we have that r is applied when r is applicable and
|Hr ∩ I | = 12. A rule is satisfied if it is applied or not applicable. A model is defined in
the usual way as a total interpretation that satisfies every rule. A model M is said to be
minimal if there does not exist a model N such that N+ ⊂M+.

3 Ordered Choice Logic Programming

An ordered choice logic program (OCLP) is a collection of choice logic programs,
called components, which are organized in a strict partial order3 that represents some
preference criterion (e.g. specificity, reliability, . . .).

Definition 1. An Ordered Choice Logic Program, or OCLP, is a pair 〈C,≺〉 where C
is a finite set of choice logic programs, called components, and “≺” is a strict pointed
partial order on C.

For two components C1, C2 ∈ C, C1≺C2 implies that C1 is preferred over C2.
Throughout the examples, we will often represent an OCLP P by means of a directed
acyclic graph (dag) in which the nodes represent the components and the arcs the ≺-
relation, where arcs point from smaller (more preferred) to larger (less preferred) com-
ponents.

Example 2. The decision problem from the introduction (Example 1) can easily be
written as an OCLP, as shown in Figure 1. The rules in components P1, P2 and P3

express the preferences in case of a small budget. The rules in P4 express the inten-
tion to buy/configure a laptop and, because of this, a decision about its various devices
should be made. In component P5, the first rule states the possibility of a larger budget.
If so, the two remaining rules allow the purchase of both a DVD-player and a CD-writer.

Definition 2. Let P be an OCLP. We use P ? to denote the CLP that contains all the
rules appearing in (a component of) P . We assume that rules in P ? are labeled by the
component from which they originate and we use c(r) to denote the component of r4.

1 In this paper we only work with total interpretations: each atom from the Herbrand base is
either true or false. Bearing this in mind, it suffices to mention only those atoms which can be
considered true.

2 For a a set X , we use |X| do denote its cardinality.
3 A relation R on a set A is a strict partial order iff R is anti-reflexive, anti-symmetric and

transitive. R is pointed if an element a ∈ A exists such that aRb for all b ∈ A.
4 Without losing generality, we can assume that a rule appears in only one component.

���

���

���

���

���

	
���
������

���
�	�	���	
���� �!�"�

#�$ �%� � �

#�$ & ��'(
��)�*�

$�+,$ ��	
�-.�)�/�

#0$ �1� � � #0$ & ��'(
��!�2� $�+3$ ��	
.-.�!�*�4	
���
����

$�+3$ �5	
�-.�)�/�4	
���� �!�
#0$ & ��'�
��!�*�4	
���� �!�

Fig. 1. The Configuration OCLP of Example 2

The Herbrand base BP of P is defined by BP = BP ? .
An interpretation for P is any interpretation of P ?. We say that a rule r in P is appli-
cable w.r.t. an interpretation I iff Br ⊆ I; r is applied w.r.t. I iff r is applicable and
|Hr ∩ I | = 1.

Example 3. For the OCLP in Example 2, the sets I = {dvd player ,small}, J =
{laptop,cd writer ,small} , K = {laptop,dvd player ,small} and L = {dvd player ,

larger ,cd writer , cd player ,laptop} are all interpretations. The interpretation I makes
the rule small ⊕ larger ← applied while the applicable rule cd writer ← is not
applied.

Facing a decision means making an exclusive choice between the various alterna-
tives which are available. If we want OCLP to model/solve decision problems we need a
mechanism for representing them. In a CLP, decisions are generated by so-called choice
rules i.e. rules with multiple head atoms. For OCLP, we can do a something similar as
long as we also take the preference order into account. We want to make sure that we
leave the option open to overrule the exclusiveness of a choice when in more preferred
components multiple alternatives are suggested (e.g. Example 1). Hence we say that an
atom a is an alternative for an atom b in a component C if an applicable rule exists in a
component at least as preferred as C containing both a and b in its head.

Definition 3. Let I be an interpretation of an OCLP P = 〈C,≺〉 with C ∈ C. The
set of alternatives in C for an atom a ∈ BP w.r.t. I , denoted ΩI

C
(a), is defined as5:

ΩI
C

(a) = {b | ∃r ∈ P ? · c(r)4C ∧ Br ⊆ I ∧ a, b ∈ Hr with a 6= b} .

Example 4. Reconsider Example 3. The alternatives for cd rom in P2 w.r.t. J are
ΩJ

P2
(cd rom) = {dvd player , cd writer}. W.r.t. I , we obtain ΩI

P2
(cd rom) = ∅,

since the choice rule in P4 is not applicable. When we take P5 instead of P2, we obtain
w.r.t. J : ΩJ

P5
(cd rom) = ∅.

Given the alternatives in a certain context (a component and an interpretation), one
naturally selects that alternative that is motivated by a more preferred rule, thus defeat-
ing the rule(s) suggesting less preferred alternatives. However, if alternatives appear

5 6 is the reflexive closure of ≺.

in the same or unrelated components, two approaches are possible: using a skeptical
strategy, one would refrain from making a decision, i.e. not selecting any of the various
alternatives, while a credulous setting suggests an arbitrary choice of one of the alterna-
tives. For both types of reasoning one can think of situations where one approach works
while the other gives an incorrect, unintuitive outcome. Skeptical reasoning is practiced
in American law when a jury cannot come to a unanimous decision. An example of
credulous reasoning is the decision a goal-keeper faces in football when trying to stop
a penalty. To accommodate this problem, we introduce a semantics for both types of
reasoning. From a skeptical viewpoint, we say that rule is defeated if one can find a
better, more preferred alternative for each of its head atoms.

Definition 4. Let I be an interpretation for an OCLP P . A rule r ∈ P ? is defeated
w.r.t. I iff ∀a ∈ Hr · ∃r′ ∈ P ? · c(r′)≺c(r) ∧ Br′ ⊆ I ∧ Hr′ ⊆ ΩI

c(r)(a) .

Example 5. Reconsider Example 3. The rule cd rom ← is defeated w.r.t. J by the
rule cd writer ← . The rule cd rom ⊕ cd writer ⊕ dvd player ← is defeated w.r.t.
L by the combination of the rules dvd player ← larger and cd writer ← larger .

Example 6. Consider the OCLP 〈{P1 = {a ← ; b ← }, P2 = {a ⊕ b ← }}, P2≺P1〉.
Given the interpretation {b}, the rule a ← is not defeated as the only alternative of a,
i.e. b, is not brought forward in a more preferred component.

Just as for the skeptical semantics we need to define an appropriate defeating strat-
egy. An obvious way of doing so consists of simply dropping the condition that an
alternative should be found in a more preferred component. Unfortunately, this leads to
unintuitive results. To avoid this, we need to make sure that credulous defeaters are not
only applicable, but also applied.

Definition 5. Let I be an interpretation for an OCLP P . A rule r ∈ P ? is c-defeated
w.r.t. I iff ∀a ∈ Hr ·∃r′ ∈ P ? ·c(r) 6≺ c(r′) ∧ r′ is applied w.r.t. I ∧ Hr′ ⊆ ΩI

c(r)(a) .

Example 7. While the skeptical approach makes it impossible to have the rule a ← in
Example 6 defeated w.r.t. {b}, the credulous semantics can.

For our model semantics, both skeptical as credulous, rules that are not satisfied (as
for choice logic programs) must be (c-)defeated.

Definition 6. Let P be an OCLP. A total interpretation I is a skeptical/credulous mo-
del iff every rule in P ? is either not applicable, applied or (c-)defeated w.r.t. I . A skep-
tical/credulous model M is minimal iff M is minimal according to set inclusion, i.e. no
skeptical/credulous model N of P exists such that N+ ⊂M+.

Example 8. Reconsider the interpretations I , J , K and L from Example 3. Only K and
L are skeptical/credulous models. Model L is not minimal due to the skeptical/credulous
model Z = {dvd player ,cd writer ,laptop ,larger}. The minimal skeptical/credulous
models K and Z correspond to the intuitive outcomes of the problem.

Example 9. The program of Example 6 has no skeptical models but two credulous ones:
{a}, {b}.

The next example illustrates that the skeptical/credulous model semantics does not
always provide the appropriate solutions to the decision problem at hand.

Example 10. Consider the ordered choice logic program P = 〈{P1 = {a ←}, P2 =
{b←}, P3 = {a⊕b← c}, P3≺P2≺P1〉, where P has two minimal skeptical/credulous
models: M = {b, c}, and N = {a, b}. Clearly, c is an unsupported assumption in M ,
causing P3 to trigger an unwarranted choice between a and b.

We introduce an adaptation of the Gelfond-Lifschitz [14] and reduct ([16]) trans-
formations to filter unintended (minimal) models containing unsupported atoms. This
results in the skeptical/credulous answer set semantics.

Definition 7. Let M be a total interpretation for an OCLP P . The Gelfond-Lifschitz
transformation (resp. reduct) for P w.r.t. M , denoted P M (resp. P M

c), is the CLP
obtained from P ? by removing all (c-)defeated rules. M is called a skeptical (resp.
credulous) answer set for P iff M is a minimal model6 for P M (resp. P M

c).

Although both answer set semantics produce models (skeptical or credulous ones)
for the program, they differ in whether they produce minimal ones or not. Just as for
answer sets of semi-negative logic programs, we find that skeptical answer sets are mi-
nimal skeptical models. For extended disjunctive logic programs, the answer set seman-
tics is not minimal[16]. The same applies for credulous answer sets of ordered choice
logic programs, as demonstrated by the following example.

Example 11. Consider the program P = 〈{P1 = {r1 : g ←}, P2 = {r2 : p⊕d←; r3 :
g ⊕ p ←; r4 : g ⊕ d ←}}, P2≺P1〉. Consider M1 = {g} and M2 = {g, d}. Clearly,
M+

1 ⊂ M+
2 , while both interpretations are credulous answer sets for P . For M1, we

have that P M1

c = {g ←; g ⊕ d ←; g ⊕ p ←} for which it can easily be verified that
M1 is a minimal model. The program P M2

c = {p⊕ d ← ; g ⊕ p ←} has two minimal
models: {p} and {g, d}. Note that M2 is a credulous model because the c-defeater has
become c-defeated, i.e. the justification in M1 for c-defeating p⊕ d← has disappeared
in M2.

Non-minimal credulous answer sets appear when the program contains inconsistencies
on a decision level: in the above example the following choices have to be made: {p, d},
{g, p} and {g, d}. Because of the program’s construction, one can choose either one or
two alternatives and c-defeating will make the choice justifiable.

4 Implementation

For the last five years, answer set programming has gained popularity. One of the main
forces behind this is the growing efficiency of answer solvers like smodels ([12]) and
dlv ([17]).

In this section, we propose a mapping, for both semantics, to semi-negative logic
programs. Since both answer set solvers support this type of programs, this would allow

6 The definition in [8] states a stable model, but since both are identical for CLP, we have opted
in this paper to use minimal model instead.

us to implement an OCLP front-end for them. Due to page restrictions, we are unable
to provide proofs for the presented theorems. However, full details can be found in the
technical appendix to this paper which is accessible from:
http://www.cs.bath.ac.uk/∼mdv/publications.html.

4.1 Skeptical Mapping

The skeptical answer set semantics is based on the notion of defeat. If we want to map
our formalism to a language which does not support this, we need a way to encode it.
This implies anticipating which combinations of rules could be capable of defeating a
rule and which ones are not.

The definition of defeating relies strongly on the notion of alternatives: rules can
only be defeated by rules containing alternatives of the head atoms. Therefore, antici-
pating defeaters also implies predicting alternatives. According to Definition 3, b is an
alternative of a in a component C if one can find an applicable choice rule as preferred
as C containing both a and b in the head. This implies that even without an interpreta-
tion we can find out which atoms might be alternatives; it only remains to be checked
if the rule is applicable or not. These condition-based alternatives are called a possible
future alternatives and are defined more formally below.

Definition 8. Let P be an OCLP, C ∈ C be component of P and a ∈ BP . The set
of possible future alternatives of a in C, denoted as AP

C
(a), is defined as AP

C
(a) =

{(b, Br) | ∃r ∈ P · c(r)4C, a, b ∈ Hr, a 6= b}.

Example 12. Consider the OCLP P = 〈{P1 = {r1 : a ←; r2 : f ←}, P2 = {r3 :
a ⊕ b ⊕ c ← d; r4 : a ⊕ d ← f ; r5 : d ⊕ c ←}, P2≺P1}〉. The possible future
alternatives of a in P1 equal AP

P1
(a) = {(b, {d}), (c, {d}), (d, {f})}.

The next theorem demonstrates that alternatives can be expressed in terms of possi-
ble future alternatives.

Theorem 1. Let P be an OCLP, C ∈ C be component of P , a ∈ BP and I an interpre-
tation for P . Then, ΩI

C
(a) = {b | (b, S) ∈ AP

C
(a) ∧ S ⊆ I}.

Having these possible future alternatives allows us to detect possible future de-
featers in much the same way as we detect standard defeaters (Definition 4). The only
extra bit we need is to collect all the conditions on the alternatives. This collection then
acts as the condition for the defeating rule.

Definition 9. Let P be an OCLP, C ∈ C be component of P and a ∈ BP . The set of
possible future defeaters of a in C, denoted asDP

C
(a), is defined asDP

C
(a) = {(r, S) |

∃r ∈ P · c(r)≺C, ∀b ∈ Hr · ∃(b, Bb) ∈ AP

C
(a) · S =

⋃
Bb ∪ Br}.

Note that possible future defeaters are defined for atoms and not for rules. This
makes the transformation easier to read and unclutters the definitions.

Example 13. When we look back to the program P of Example 12, we have that a has
a one possible future defeater in P1 as: DP

P1
(a) = {(r5, {d, f})}. All the other atoms

in the program do not have any possible future defeaters in any of the components.

Clearly, possible future defeaters can be used for expressing interpretation-dependent
defeaters.

Theorem 2. Let P be an OCLP and let I be an interpretation for it. A rule r ∈ P ? is
defeated w.r.t. I iff ∀a ∈ Hr · ∃(r′, S) ∈ DP

c(r)(a) · Br′ ⊆ I, S ⊆ I .

These possible future defeaters are the key to mapping OCLPs to semi-negative
logic programs. We are only required to turn the information which makes possible
future defeaters into defeaters, i.e. they have to be applicable, into a condition. To make
this possible, we introduce for each non-constraint rule r in the program two new atoms:
dr and ar. The former indicates that the rule r is defeated or not, while the truth value
of the latter is an indicator of the applicability of the rule.

Definition 10. Let P be an OCLP. Then, the logic program P¬ is defined as follows:
1. |Hr| = 0: r ∈ P¬

2. |Hr| ≥ 1:
(a) a← Br,¬dr¬(Hr \ {a}) ∈ P¬: ∀a ∈ Hr

(b) ar ← Br ∈ P¬

(c) dr ← C ∈ P¬: ∀a ∈ Hr · ∃(ra, Sa) ∈ DP

c(r)(a) · C =
⋃

(ara
∪ Sa)

(d) ← a, b, Br,¬dr ∈ P¬: ∀a, b ∈ Hr · a 6= b

Since constraints are not involved in the defeating process, we can simply copy them
to the corresponding logic program. For the answer set semantics of ordered choice
logic program, we need, among other things, that each applicable, undefeated rule ad-
mits exactly one head atom. Rules of type a) and d) make sure that the corresponding
rules in the logic program do not viololate this property. The rules of type b) indicate
which orginal rules are applicable. The c)-rules are probably the most difficult ones.
They express when a rule should or could be considered defeated. If we look at Theo-
rem 2, we have a mechanism for relating possible future defeaters to actual defeaters.
For defeaters we need an interpretation, but if we put the set of atoms that need to be
true in the body of a rule simulating defeat, we can be sure that models making these
rules applicable, can be used to defeat the original rule. Thanks to rules of type b), we
can replace those elements with ar

Example 14. The corresponding logic program P¬ of the OCLP of Example 12 looks
like:

a← ¬dr1
a← f,¬d,¬dr4

ar2
← ← d,¬dr3

, a, b

f ← ¬dr2
d← f,¬a,¬dr4

ar3
← d ← d,¬dr3

, a, c

a← d,¬b,¬c,¬dr3
d← ¬c,¬dr5

ar4
← f ← d,¬dr3

, b, c

b← d,¬a,¬c,¬dr3
c← ¬d,¬dr5

ar5
← ← f,¬dr4

, a, c

c← d,¬a,¬b,¬dr3
ar1
← dr1

← ar5
, d, f ← ¬dr5

, d, c

The original OCLP of Example 12 has two skeptical answer sets, {f, d} and {f, c, a},
which correspond exactly with the two answer sets, {ar1

, ar2
, ar3

,ar4
, ar5

, dr1
, f, d}

and {ar1
, ar2

, ar4
, ar5

, f, c, a}, of P¬.

Theorem 3. Let P be an OCLP and P¬ be its corresponding logic program. Then, a
one-to-one mapping exists between the skeptical answer sets M of P and the answer
sets N of P¬ in such a way that N = M ∪ {ar | ∃r ∈ P · |Hr| ≥ 1, Br ⊆M} ∪ {dr |
∃r ∈ P · r is defeated w.r.t. M} .

4.2 Credulous Mapping

To obtain the credulous answer set semantics for OCLPs, we propose a similar mapping
to semi-negative logic programs. The only difference between the skeptical and the
credulous semantics is the way they both handle defeat. For the credulous version, we
need to make sure that we look for c-defeaters in all components which are not less
preferred as the rule we wish to defeat. Furthermore, we have to make sure that c-
defeaters are applied and not just applicable as is the case for defeaters. The former will
be encoded by means of possible future c-defeaters while the latter will be translated in
a different style of ar rules in the mapping.

The definition of possible future c-defeater is identical to the one of its skeptical
counter-part except that it looks for rules in all components which are not less preferred.

Definition 11. Let P be an OCLP, C ∈ C be component of P and a ∈ BP . The set
of possible future c-defeaters of a in C, denoted as FP

C
(a), is defined as FP

C
(a) =

{(r, S) | ∃r ∈ P · C 6≺ c(r), ∀b ∈ Hr · ∃(b, Bb) ∈ AP

C
(a) · S =

⋃
Bb}.

Just as before, c-defeaters can be expressed in terms of possible future c-defeaters.

Theorem 4. Let P be an OCLP and let I be an interpretation for it. A rule r ∈ P ? is
c-defeated w.r.t. I iff ∀a ∈ Hr · ∃(r

′, S) ∈ DP

c(r)(a) ·Br′ ⊆ I, S ⊆ I .

Definition 12. Let P be an OCLP. Then, the logic program P c
¬

is defined as follows:
1. |Hr| = 0: r ∈ P c

¬

2. |Hr| ≥ 1:
(a) a← Br,¬dr,¬(Hr \ {a}) ∈ P c

¬
: ∀a ∈ Hr

(b) ar ← Br, a,¬(Hr \ {a}) ∈ P c
¬

: ∀a ∈ Hr

(c) dr ← C ∈ P¬: ∀a ∈ Hr · ∃(ra, Sa) ∈ FP

c(r)(a) · C =
⋃

(ara
∪ Sa)

The credulous mapping is very similar to the skeptical one but there are a couple of
subtle differences: an obvious difference is the use of possible future c-defeater instead
of their skeptical counterparts (c-rules). The second change are the rules implying ar

(b-rules). Previously they were used to indicate applicability, the necessary condition
for the defeat. Since c-defeat works with applied defeaters, we need to make sure that
ar is considered only true when r is applied. The less obvious change is the absence of
the rules of type d). Since a rule can only be applied when one and only one head atom
is considered true and because ar should only be considered true in this particular case,
they no longer necessary.

Example 15. Reconsider the OCLP from Example 11. If we use the mapping from
Definition 12, we obtain the following program:

g ← ¬d1 a1 ← g d1 ← a2

p← ¬d,¬d2 a2 ← p,¬d d2 ← a3, a4

d← ¬p,¬d2 a2 ← d,¬p d3 ← a2, a4

g ← ¬p,¬d3 a3 ← g,¬p d4 ← a2, a3

p← ¬g,¬d3 a3 ← p,¬g
g ← ¬d,¬d4 a4 ← g,¬d
d← ¬g,¬d4 a4 ← d,¬g

The answer sets of this program correspond perfectly to the credulous answer sets
of the original program. The newly introduced atoms make sure that the answer set
semantics remains minimal while the credulous OCLP version is clearly not.

Theorem 5. Let P be an OCLP and P¬ be its corresponding logic program. Then, a
one-to-one mapping exists between the credulous answer sets M of P and the answer
sets N of P¬ in such a way that N = M ∪ {ar | ∃r ∈ P · |Hr| ≥ 1, Br ⊆ M, |Hr ∩
M | = 1} ∪ {dr | ∃r ∈ P · r is c-defeated w.r.t. M} .

5 Relationship to Other Approaches

Our formalism shows similarities with ordered logic programming[13,15, 5], where the
latter supports disjunction (in the head), which also provides a skeptical and a credu-
lous approach. However, defeat is restricted to rules with contradictory heads, making
it difficult to represent more complex decisions. In [4], preference in extended disjunc-
tive logic programming is considered. As far as overriding is concerned, the technique
corresponds rather well with our skeptical defeating, but, again, alternatives are limited
to an atom and its (classical) negation.

To reason about updates of generalized logic programs, extended logic programs
without classical negation, [1] introduces dynamic logic programs. A stable model of
such a dynamic logic program is a stable model of the generalized program obtained
by removing the rejected rules. The definition of a rejected rule corresponds to our
definition of a defeated rule when a and¬a are considered alternatives. A similar system
is proposed in [11], where sequences are based on extended logic programs, and defeat
is restricted to rules with opposing heads. The semantics is obtained by mapping to
a single extended logic program containing expanded rules such that defeated rules
become blocked in the interpretation of the “flattened” program. In [8], a mapping from
extended logic programs to OCLP was presented. A very similar mapping allows us to
map both dynamic logic programs as sequences of extended logic program to OCLP.

[2] added a system of preference to the dynamic logic programs of [1]. This pref-
erence is used to select the most preferred stable models. A similar mechanism is also
used by [3] to obtain preferred answer sets: preferences are used to filter out unwanted
candidate models, they are not used during model creation as is the case for OCLP.

[18] also proposes a formalism that uses the order among rules to induce an order
on answer sets for inconsistent programs, making it unclear on how to represent deci-
sions. Along the same line, [10] proposes logic programs with compiled preferences,
where preferences may appear in any part of the rules. For the semantics, [10] maps the
program to an extended logic program.

6 Conclusions and Directions for Future Research

In this paper we proposed a mechanism for transforming ordered choice logic programs
to semi-negative logic program while preserving, depending on the transformation, the
skeptical or credulous answer set semantics.

Having such a transformation allows an implementation of OCLP on top of answer
set solvers like Smodels ([12]), and dlv ([17]). Clearly the mapping we proposed in
this paper is more theoretical inspired and can be made more efficient by taking into
account the various constructs provided by the answer set solvers. The disjunctive rules
provided by dlv would reduce rules of type a), while the special choice construct of
smodels would reduce both rules of type a) and d). Theoretically speaking, there is no
need to introduce the atoms ar. One can easily incorporate the bodies into the rules
describing the defeating conditions. Unfortunately, this makes the mapping harder to
read and would, in the credulous case, create more rules of type c). Writing the actual
front-end, we need to investigate which option would be more efficient.

Previously, OCLP was used to describe and to reason about game theory ([8, 9]).
To this extend, we used a special class of OCLPs. Each atom appears exactly once in
a choice rule and non of the choice rules can be defeated. Combining this knowledge
with the mapping of OCLP to logic programs, we can create a game-theory tailored
front-end to answer set solvers.

In [9], we proposed a multi-agent system were the knowledge and beliefs of the
agents is modeled by an OCLP. The agents communicate among each other by sending
answer sets, skeptical or credulous, to each other. The notion of evolutionary fixpoint
shows how the various agents reasoned in order to come to their final conclusions.
Having an implementation for OCLP would allow us to implement multi-agent systems
and run experiments in various domains. One possibility would be trying to incorporate
this knowledge into Carel ([19]), a multi-agent system for organ and tissue exchange.

References

1. José Júlio Alferes, Leite J. A., Luı́s Moniz Pereira, Halina Przymusinska, and Teodor C.
Przymusinski. Dynamic logic programming. In Cohn et al. [6], pages 98–111.

2. José Júlio Alferes and Luı́s Moniz Pereira. Updates plus preferences. In European Workshop,
JELIA 2000, volume 1919 of Lecture Notes in Artificial Intelligence, pages 345–360, Malaga,
Spain, September–October 2000. Springer Verslag.

3. Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2):297–356, April 1999.

4. Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive Logic Programs with
Inheritance. In Danny De Schreye, editor, International Conference on Logic Programming
(ICLP), pages 79–93, Las Cruces, New Mexico, USA, 1999. The MIT Press.

5. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Disjunctive ordered logic: Seman-
tics and expressiveness. In Cohn et al. [6], pages 418–431.

6. Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, editors. Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and Reasoning,
Trento, June 1998. Morgan Kaufmann.

7. Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice Logic Programs. In
Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors, Logic Programming and Non-
Monotonic Reasoning Conference (LPNMR’99), volume 1730 of Lecture Notes in Artificial
Intelligence, pages 236–246, El Paso, Texas, USA, 1999. Springer Verslag.

8. Marina De Vos and Dirk Vermeir. Dynamic Decision Making in Logic Programming and
Game Theory. In AI2002: Advances in Artificial Intelligence, Lecture Notes in Artificial
Intelligence, pages 36–47. Springer, December 2002.

9. Marina De Vos and Dirk Vermeir. Logic Programming Agents Playing Games. In Research
and Development in Intelligent Systems XIX (ES2002), BCS Conference Series, pages 323–
336. Springer, December 2002.

10. J. Delgrande, T. Schaub, and H. Tompits. Logic programs with compiled preferences. In
W. Horn, editor, European Conference on Artficial Intelligence, pages 392–398, 2000.

11. Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. On Properties of update
Sequences Based on Causal Rejection. Theory and Practice of Logic Programming, 2(6),
November 2002.

12. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system dlv: Progress report, comparisons and benchmarks. In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Repre-
sentation and Reasoning, pages 406–417. Morgan Kaufmann, San Francisco, California,
1998.

13. D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for Ordered
Logic Programs. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd
International Conference on Principles of Knowledge Representation and Reasoning, pages
208–217, Cambridge, Mass, 1991. Morgan Kaufmann.

14. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of fifth logic programming symposium, pages 1070–1080. MIT PRESS, 1988.

15. Els Laenens and Dirk Vermeir. A Universal Fixpoint Semantics for Ordered Logic. Com-
puters and Artificial Intelligence, 19(3), 2000.

16. Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artificial
Intelligence, 138(1-2):39–54, 2002.

17. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceed-
ings of the 4th International Conference on Logic Programing and Nonmonotonic Reason-
ing, volume 1265 of LNAI, pages 420–429, Berlin, July 28–31 1997. Springer.

18. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic pro-
grams. In European Workshop, JELIA 2002, volume 1919 of Lecture Notes in Artificial
Intelligence, pages 432–443, Cosenza, Italy, September 2002. Springer Verlag.

19. Javier Vázquez-Salceda, Julian Padget, Ulises Cortés, Antonio López-Navidad, and Fran-
cisco Caballero. Formalizing an electronic institution for the distribution of human tissues.
Artificial Intelligence in Medicine, 27(3):233–258, 2003. published by Elsevier.

