Ordered Programs as Abductive Systems

Davy Van Nieuwenborgh* and Dirk Vermeir**

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
{dvnieuwe,dvermeir}@vub.ac.be

Abstract. In ordered logic programs, i.e. partially ordered sets of clauses where
smaller rules carry more preference, inconsistencies, which appear as conflicts
between applicable rules, are handled by satisfying more preferred rules, at the
expense of defeating lesser rules. We show that this formalism can be exploited
to obtain a simple implementation of abductive systems, where abducibles are
assumed false by default, but weaker rules can be used to introduce them, if
necessary. Moreover, the approach can be extended, without leaving the ordered
programming framework, to support abductive systems involving preference, ei-
ther on the set of abducibles or on the system description. The latter case ap-
pears naturally in applications such as legal reasoning where rules carry a natural
precedence. However, combining preference on abducibles with a complex the-
ory structure brings the complexity, e.g. of the relevance problem, to X1, and
thus such systems cannot be simulated by ordered programs.

1 Introduction

Order (or preference) in logic programming represents one of the possible ways to rep-
resent non-monotonic reasoning problems. The preferred answer set semantics of [23,
21] uses a partial order defined among the rules in a program to prefer certain extended
answer sets above others, where the extended answer set semantics is a natural exten-
sion of the classical one [16], dealing with inconsistencies by allowing contradictory
rules to defeat each other.

Consider the program in Fig. 1, where rules in lower levels are smaller (more pre-
ferred) than rules in higher levels.

This program has two preferred answer sets, i.e. {a, m} and {b,m}. The rule m «
not(m) forces m to be in every preferred answer set of the program, without providing
a justification for it. To justify m, rules such as m <« a in the next higher level have
to be applied, but a < or b < can only be employed if necessary to derive m, as
otherwise not(a) <+ and not(b) « are preferred. In fact, without the rule m <« not(m),
the program would have the single answer set {not(a), not(b), not(m)}.

The above program can be regarded as an abductive system where the theory con-
sists of the rules {m < a, m < b}, the set of abducibles is {a, b} and {m} contains the

* Supported by the FWO
** This work was partially funded by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the 1ST-2001-37004 WASP
project



a <+
b+
not(a) «+
not(b) <+
m < a
m <+ b
m < not(m)

Fig. 1. Ordered program simulating abduction

manifestations. This system clearly has {a} and {b}, i.e. the corresponding program’s
preferred answer sets, as subset minimal explanations for {m}.

We extend the above approach by allowing the theory of an abductive system to be
an ordered program. This is useful, e.g. in legal reasoning systems where laws are often
ordered w.r.t. legal precedence. Abductive systems using such a theory would prefer
explanations based on laws with higher precedence. It turns out that this extension also
nicely maps to ordered programming using the intuition depicted in Figure 1, replacing
the rules m < a and m <« b with the ordered theory.

Traditionally, for abductive systems, one usually restricts to subset minimal expla-
nations. Here, we generalize this criterion to support a preference relation between ab-
ducibles and then preferring explanations that are minimal w.r.t. the induced partial
order. Having a partial order on abducibles is useful, e.g. when certain abducibles are
more likely to occur or more expensive to handle. Again, this extension can be accom-
modated by a similar construction as the one shown in Figure 1.

Interestingly, when considering the combination of both extensions, i.e. an ordered
theory and an ordered set of abducibles, the above approach breaks down, as it will
treat both preference relations (on the abducibles and on the system) as a single order,
and thus the program will usually yield preferred explanations that are optimal w.r.t.
the (more specific) system order, ignoring the preference structure on the rules corre-
sponding to the abducibles. It turns out that such abductive systems cannot be simulated
by ordered programs because the complexity of e.g. the relevance problem for abduc-
tive reasoning with such combined systems lies in 2T, which cannot be expressed by
ordered programs [23].

The remainder of this paper is organized as follows: Section 2 presents a brief
overview of the preferred answer set semantics for extended ordered logic programs
while Section 3 recalls classical (logic programming based) abductive systems. Sec-
tion 4 generalizes these abductive systems by allowing an ordered program as the sys-
tem description, thus inducing a preference relation on the possible explanations. We
present an algorithm transforming such an ordered abductive system into an ordered ex-
tended logic programs. Abductive systems with a partial order relation on the abducibles
are considered in Section 5, together with a transformation to abductive systems with
an ordered theory. Furthermore, we show that a combination of both order relations
into a multi-ordered abductive system cannot be captured by the preferred answer set



semantics. Section 6 discusses the relationship with other approaches. Conclusions and
directions for further research are stated in Section 7. All proofs can be found in [22].

2 Preliminaries

We use the following basic definitions and notation. A literal is an atom a or a negated
atom —a. An extended literal is a literal or a naf-literal of the form not(/) where [ is
a literal. The latter form denotes negation as failure: not(!) is interpreted as “I is not
true”. We use { to denote the ordinary literal underlying an extended literal, i.e. [ = a if
I = not(a) while @ = a if a is an ordinary literal. Both notations are extended to sets so
X = {é] e e X}, with X aset of extended literals, while not(Y') = {not({) | I € Y’}
for any set of (ordinary) literals Y.

For a set of literals X we use —X to denote {—p | p € X } where —(—a) = a. Also,
X denotes the positive part of X, i.e. XT = {a € X | a is an atom}. The Herbrand
base of X, denoted B, contains all atoms appearing in X, i.e. Bx = (X U-X)T. A
set I of literals is consistent if 7 N —I = ().

For a set of extended literals X', we use X ~ to denote the literals underlying ele-
ments of X that are not ordinary literals, i.e. X~ = {i | not(!) € X}. It follows that X
is consistent iff the set of ordinary literals —(X ~) U (X \not(X ~)) is consistent.

An extended rule is a rule of the form a < 8 where aU 3 is a finite set of extended
literals and |a| < 1. A simple rule is an extended one with o« U 5 containing only
ordinary literals. We will often confuse a singleton set with its sole element, writing
rulesas a « S or + f.

An extended logic program (ELP) is a countable set P of extended rules of the form
a <+ [ where a U S is a finite set of extended literals, and |a| < 1, i.e. v is a singleton
orempty. If (¢ U B)~ = 0, i.e. all rules are free from naf-literals, P is called a simple
program (SLP). The Herbrand base Bp of and ELP (or SLP) P contains all atoms
appearing in P. An interpretation I of P is any consistent subset of Bp U =Bp. An
interpretation I is total iff B, C T U —1.

An extended literal [ is true w.r.t. an interpretation I, denoted I |= [ if I € I in case
lis ordinary, or I - a if | = not(a) for some ordinary literal a. As usual, I |= X for
some set of (extended) literals [ iff Vie X - I = 1.

Arule r = a + (s satisfied by I, denoted I = r, if [ = a, a # (), whenever
I|= B, i.e. ifrisapplicable (I |= $3), then it must be applied (I = 5 U a).

For a simple program P, an answer set is a minimal interpretation I that is closed
undertherulesof P (i.e.Vre P-1|=7).

Foran ELP P and an interpretation I we use P; C P to denote the reduct of P w.r.t.
Iie. Pr={r € P| I r}. We also define the GL-reduct for P w.r.t. I, denoted P’,
as the program consisting of those rules a \ not(a™) « (#\not(5~)) where a < 3
isin P, I = not(3~) and I = a~. Note that all rules in P! are free from negation
as failure, i.e. PT is a simple program. An interpretation I is then an answer set of P
iff 7 is an answer set of the reduct P. An extended rule r = a « £ is defeated w.r.t.
P and I iff there exists an applied competing rule ' = o' « ' such that {a,a’}
is inconsistent. An extended answer set for P is any interpretation 7 such that 7 is an
answer set of Pr and each unsatisfied rule in P\ Py is defeated.



An extended ordered logic program (EOLP) is a pair (R, <) where R is an ELP
and < is a well-founded strict partial order on the rules in R. When R is a SLP, the pair
(R, <) is called an ordered logic program (OLP). Intuitively, r; < r, indicates that r;
is more preferred than r,. In the examples we will often represent the order implicitly
using the format

Ry
Ry
Ry

where each R;, i > 0, represents a set of rules, indicating that all rules below a line are
more preferred than any of the rules above the line, i.e. Vi > 0-Vr; € R;,r;11 € Rjt1-
r; < Tig1 Or Vi>0-R; < R11+1 for short.

Let P = (R, <) be an EOLP. For subsets R, and R, of R we define Ry < R iff
Vry € RQ\Rl -dry € Rl\RQ - < 1y We write By < R» jUSt when R, < Rs and
Ry # R». For My, M, extended answer sets of R, we define My < M, iff Ry, <
Ryp,. Asusual, My < M, iff My < Mo and M; # M. An answer set for an EOLP P
is any extended answer set of R. An answer set for P is called preferred if it is minimal
w.r.t. <. An answer set is called proper if it satisfies all minimal (according to <) rules
in R.

3 Classical Abduction

Classical abductive systems use ELP’s, i.e. programs containing both classical negation
and negation as failure, to describe the theory under consideration. Our definition of the
classical abductive framework is based on the one from [20], which in turn is based on
the belief set semantics from [9].

Definition 1. An abductive logic program (ALP) is a triple S = (T, A, M), where T
is a ELP representing the theory, A is a set of literals representing the abducibles and
M is a set of literals representing the manifestations.

Asubset H C A is an explanation for S iff there is an answer set @ for T'U {z <+ |
x € H}suchthat M C Qand H = QN A.

Intuitively, an explanation contains those abducibles that should be assumed true to
justify the manifestations from the theory.

Example 1. Suppose that a radiator in the room is cold, while it should be hot, i.e.
M = {cold_radiator}. This may be explained by any of the abducibles in A =
{no_fuel, no_power, broken_pump, broken_heater}. The theory T' describes how
these abducibles affect the central heating system.

no_combustion < no_fuel cold_water < no_combustion
no_combustion < no_power cold radiator < cold _water
cold_radiator < broken_pump no_combustion < broken_heater

E.g., without power, fuel or a working heater, no combustion can take place which,
in turn, affects the temperature of the water and the radiator. Alternatively, a broken
water pump prevents warm water from passing the radiator.



Some of the explanations for cold _radiator are Hy = {no_fuel}, Hy = {no_power},
Hs = {broken_pump}, Hy = {broken_heater} and Hy = {no_fuel, broken_pump}.

Note that H5 in Example 1 is likely to be redundant since Hy; = H; U Hs, i.e. the
manifestations can be explained using a subset of the abducibles in Hj.

In general, we assume that sets of abducibles may carry a preference order. Preferred
explanations then correspond to explanations that are minimal with respect to this order.

Definition 2. Let S = (T, A, M) be an ALP, with < a partial order relation on 24. An
explanation of S is called <-preferred iff it is minimal w.r.t. <.

Often, < is taken as the subset order although cardinality order is also used (e.g. in
abductive diagnosis, if all components in a circuit are equally likely to fail, cardinality-
preferred explanations are more likely). In Example 1, H,, H,, H; and H,4 are C-
preferred explanations.

Definition 1, which follows [11, 12], differs from the definition in [6] which does not
require the H = Q N A condition. This influences the set of explanations, as illustrated
in the following example.

Example 2. Consider the abductive program S = (T, A, M) with T containing
air_in_fuel_pump < out_of _diesel and car_does_not_start < out_of _diesel, A =
{out_of _diesel, air_in_fuel pump} and M = {car_does_not_start}.

The semantics of [6] yields {out_of _diesel} as a C-preferred explanation while
{out_of _diesel, air_in_fuel_pump} is C-preferred according to Definition 1. Thus, [6]
returns the “root abducibles” of the problem, leaving out side effects. On the other hand,
Definition 1’s solution includes the side effects, which is useful in this example, as just
refueling diesel will not completely fix the problem: one must also ventilate the fuel

pump.

4  Abduction with Ordered Theories

Often, the rules making up the system description display a natural preference order.
E.g. in legal reasoning, the clauses representing laws are ordered according to their
legal precedence. Naturally, with an ordered system description, one would prefer ex-
planations that maximally satisfy that theory; in particular more preferred rules should
only be defeated as a last resort.

Definition 3. An abductive ordered logic program (AOLP) is a triple D =
(P,A, M), where P = (R,<g) is an EOLP representing the theory, A is a set of
literals representing the abducibles and M is a set of literals containing the manifesta-
tions.

A subset H C A is an explanation iff there exists an extended answer set @ for
RU{h«+|he H}U{not(a) <|aec A\ H},suchthat M CQand H = QN A.

For an explanation H, we use R, ¢ to denote the set Rg C R, i.e. the reduct of R
w.r.t. the extended answer set Q).

Note that there may be several extended answer sets (), and associated reducts R,
to justify an explanation H. An explanation is called proper iff it has an associated
reduct R satisfying all minimal (according to <g) rulesin R.



Example 3. Consider the AOLP D = (P, A, M) representing the trial of shooting in-
cidents, where P is depicted below and A = {unarmed, threatened, shoot, dead}.

ryt guilty < shoot, dead
ro :  self _defense < threatened
r3: —guilty < shoot, dead, self _defense

rq : 0self _defense < shoot, unarmed

The preferred rules r3 and r, state that one cannot be found guilty if one acted out
of self defense and that self defense cannot be invoked if one shot an unarmed person.
The more general rules r; and r, present the default treatment for a fatal shooting and
a possible justification (having been threatened by the victim) for self defense.

Assuming that the facts of the case (i.e. the manifestations) are F' = {shoot, dead,
threatened }, the latter claimed by the defendant, a lawyer eager to obtain a conviction
will search for an optimal explanation of A = F U {guilty}.

D has two explanations for A, namely Hy = {shoot, dead, threatened}, corre-
sponding to the answer set Q1 = M U{self -defense} and Hy = Hy U{unarmed} cor-
responding to both Q2 = M U {unarmed, —self _defense} and Q' = M U {unarmed,
self _defense}. The corresponding sets of satisfied rules w.r.t. these explanations are
RHl.,Ql =P \ {Tg}, .R)LIQ’Q2 =P \ {TQ} and RHQ,Q’Z =P \ {’I“g,’l“4}. OnIy H, isa
proper explanation.

The preference order among explanations is based on the < order among the corre-
sponding sets of satisfied rules.

Definition 4. Let D be an AOLP with Ry, o, and Ry, q,* sets of rules corresponding
with the explanations H; and H,. Then, Ry, o, is preferred upon Ry, ¢,, denoted
: Hy, C Hy if RH1=Q1 = RH27Q2 s

Ruqi © R 1ff { R, o, < Rm, g, otherwise .
An explanation H is preferred iff it corresponds to a minimal (w.r.t. C) R .

Note that the special clause for Ry, o, = Rm.,q. IS necessary, e.g. when both ); and
Q- satisfy all rules in R. In such a case, the smaller (w.r.t. C) explanation is preferred.

Example 4. In Example 3, Ry, g, = P\ {r2} is the unique minimal (w.r.t. C) reduct.
Therefore, the lawyer should attempt to establish unarmed in order to obtain a convic-
tion.

We show that —-preferred explanations of an AOLP D can be retrieved from the pre-
ferred answer sets of an EOLP (D) corresponding to D. The construction is such that,
foragiven AOLP D = ((R, <g), A, M), the proper preferred answer sets of L(D) rep-
resent the C-preferred explanations of D, i.e. for any proper preferred answer set () of
L(D), @ N A is a preferred explanation and the other way around.

The construction of (D) follows the intuition sketched in Section 1.

! We abuse notation by considering R as atagged set, such that Ry g+ may not be the same
as Ry, although, as sets of rules, Ry, = Rp /-



— The bottom component R,,, of L(D), whose rules will always be satisfied, consists
of a set of “constraint” rules that enforce the manifestations, without providing a
justification for them. As the manifestations A/ should be derived from an expla-
nation combined with the theory, the constraint rules have the form m <+ not(m),
m € M.

— On top of the bottom component, we put the theory R ordered w.r.t. <g, simulating
that we want as many specific rules satisfied as possible, while still deriving the
manifestations.

— On top of the highest components in <g, i.e. its least preferred clauses, we put
a component R,, with rules of the form not(a) <, for each abducible a € A,
simulating that abducibles are normally not assumed to be true. This ensures that
the semantics will prefer answer sets that maximize non-assumed abducibles, but
only if this does not imply that a more preferred rule becomes defeated.

— The topmost component R, > R,, introduces the possibility to assume abducibles.
Foreach a € A, R, contains a rule a « that provides a justification, if necessary,
for a. Note that all rules in R, have a stronger competitor in R,,.

Intuitively, if no abducibles are necessary to explain the manifestations, any proper
preferred answer set will satisfy all rules in R,, U R,,, defeating all rules in R,. If,
however, the manifestations cannot be explained without assuming some abducibles,
the semantics will, in order to satisfy the rules in R,,,, call upon rules in R, to introduce
them.

The following definition formalizes the above construction.

Definition 5. Let D = (P = (R, <g), A, M) be an AOLP. The EOLP version L(D)
of D isdefinedby (D) = (R, UR, URU R,,,, R,, <<, < R, < R,), where R, =
{a +|a € A}, R,, = {not(a) <] a € A} and R,;, = {m < not(m) | m € M}.

Example 5. The EOLP corresponding with the system from Example 3 is shown below.

dead <+ shoot +
unarmed <— threatened <
not(dead) <+ not(shoot) +

not(unarmed) < not(threatened) <
guilty < shoot, dead
self _defense < threatened
—self _defense < shoot, unarmed
—guilty < shoot, dead, self _defense
shoot + not(shoot)
dead < not(dead)
guilty < not(guilty)
threatened < not(threatened)

The only preferred answer set for this programis @ = { guilty, shoot, dead, unarmed,
—self _defense, threatened}, corresponding with the unique preferred explanation Ho.

In general we have the following correspondence.



Theorem 1. Let D = (P, A, M) be an AOLP. Then, H is a preferred explanation for
D iff H = Q N A. for some proper preferred answer set ) of L(D).

In abductive logic programming [6, 20], the problems of relevance and necessity are of
natural interest, where relevance means deciding if a given abducible a is contained in
some preferred explanation, while necessity refers to checking whether a is contained
in all preferred explanations.

For abductive ordered programs, checking whether a subset H C A is an explana-
tion foran AOLP D can obviously be done in polynomial time. Thus, checking whether
H is not a preferred explanation is in NP, i.e. guess a subset i’ C A suchthat H' C H,
which can be done in polynomial time, and verify if it is an explanation. Now, finding
a preferred explanation H can be done by an NP algorithm that guesses H and uses an
NP oracle to verify that it is not the case that H is not a preferred explanation.

Theorem 2. Let D = (P, A, M) be an AOLP. Deciding the problem of relevance, for
a given abducible a € A, for D is XF-complete, while deciding necessity for a is
117 -complete.

Showing the hardness part of Theorem 2 can be done by a reduction to the known
XP problem of deciding whether a quantified boolean formula ¢ = 3zy,...,z, -
Yy1,...,ym - F isvalid, where we may assume that F' = V.cc with each ¢ a conjunc-
tion of literalsover X UY with X = {z1,...,zp}andY ={y1,...,ym} (n,m > 0).
The construction is inspired by a similar result for abductive programming under C-
preferredness in [6], illustrating that the preferred explanation semantics does not in-
volve any computational overhead w.r.t. classical abductive frameworks.

5 Ordering the abducibles

Often, abducibles are themselves partially ordered according to some preference, e.g.
because one abducible is more likely to occur, or cheaper to verify, than another.

An abductive logic program with ordered abducibles, induces a partial order on the
explanations of the abductive system.

Definition 6. An abductive logic program with ordered abducibles (ALPOA) is a tuple
D = (S,<),where S = (T, A, M) is an ALP and < is a strict? partial order relation
on the elements in A. The explanations of D are the explanations of S.

For explanations H, and Ho, Hy C H, iff Ya € Hi\Hy - 3a' € Hy\H; -a < a'.

Intuitively, H; is preferred over H, if any abducible a; from H; but not in H is
“covered” by a “less preferred” abducible as > a; in Hs but notin H;. It can be shown
that C is a partial order, provided that the inverse of < is well-founded, see Lemma 1
in [22].

Example 6. Extend Example 1 to an ALPOA D = (S, <) with the abducibles ordered
as follows {no_fuel, no_power} < broken_pump < broken_heater. It can be seen
that the explanations Hy = {no_fuel} and H, = {no_power} are both C-preferred.

2 A strict partial order < on aset X is a binary relation on X that is antisymmetric, anti-reflexive
and transitive.



Each C-preferred explanation is also C-preferred.

Theorem 3. Let D = (S, <) be an ALPOA. Every C-preferred explanation H of D is
a C-preferred explanation of S.

If the order on the abducibles is empty, C-preference reduces to C-preference.

Theorem 4. Let S be an ALP. Then, all C-preferred explanations of S coincide with
the preferred explanations of D = (S, 0).

An ALPOA can be transformed into an equivalent AOLP® by placing, for a given
ALPOA D = ((T, A, M), <), T in the most preferred component of an ordered pro-
gram. On top of this component, we put a component R,, containing rules of the form
r, = not(a) <, for each abducible a € A, simulating that abducibles are normally not
assumed to be true. To take into account the preference relation between abducibles, we
order the rules in R,, such that the AOLP semantics, when confronted with the necessity
to defeat either r, or r,, will defeat r, if a < a’. So, it suffices to have r,, < r, i.e.
the order on R,, is the reverse of the order on A.
The following definition formalizes the above construction.

Definition 7. Let D = ((T, A, M), <) be an ALPOA. The AOLP version of D, de-
noted aolp(D), is defined by aolp(D) = ((R, UT,T < Ry), A, M), where R,, =
{not(a) «| a € A}. Furthermore, R5 stands for not(a;) << not(az) < with

ap,as € Aiffas < ay.

Example 7. The AOLP corresponding with the ALPOA from Example 6 is
aolp(D) = (P, A, M), where P is shown below.

not(no_fuel) < not(no_power) <«
not(broken_pump) +
not(broken_heater) <
no_combustion < no_fuel cold_water < no_combustion
no_combustion < no_power cold radiator < cold _water
cold _radiator < broken_pump no_combustion < broken_heater

It can be seen that aolp (D) has two proper preferred explanations, i.e. H; and Ho, the
preferred explanations of D.

In general, we have the following correspondence.

Theorem 5. Let D = (S, <) be an ALPOA. Then, H is a preferred explanation for D
iff H is a proper preferred explanation for aolp(D).

Since the construction of Definition 7 is polynomial, it follows that the complexity
results for ALPOA’s are similar to those for AOLP’s (Theorem 2).

It is natural to combine ordered system descriptions with a preference order on ab-
ducibles, yielding the notion a of multi-ordered abductive logic program. A preferred
explanation for such a program is obtained by selecting the best (according to the ab-
ducible ordering) explanation from among the explanations that are preferred according
to the system ordering.

% A direct simulation by an EOLP is also possible, using a construction similar to the one pro-
posed in Section 4.



Definition 8. A quadruple D = (P, A, M, <) is a multi-ordered abductive logic pro-
gram (MOALP), where (P, A, M) is an AOLP as in Definition 3 and < is a strict partial
order relation on the elements in A.

A subset H C A is an explanation H for D iff H is a preferred explanation of
(P, A, M) (Definition 3). Such an explanation H of D is preferred iff it is minimal
(among the explanations) w.r.t. C (Definition 6).

Checking whether a subset H C A is an explanation for the AOLP (P, A, M) can be
done in polynomial time, while checking whether it is not a preferred explanation is in
NP. Thus, checking whether H is not a preferred explanation of D can be done by an
NP algorithm that guesses H' C H and uses an NP oracle to verify that it is not the
case that H' is not a preferred explanation for (P, A, M), thus this problem is in X1
Finding a preferred explanation H for D can then be done by guessing H and using a
XF oracle to verify that it is not the case that H is not preferred.

Theorem 6. Let D = (P, A, M, <) be a MOALP. Deciding the problem of relevance,
for a given abducible a € A, for D is ¥F-complete, while deciding necessity for a is
I1F-complete.

Hardness is obtained by showing that the complement of relevance is 171" hard,
this by a reduction to the known I7X-hard problem of deciding whether a quantified
boolean formula ¢ = Vz1,...,2; - 321, ..., xpn - Yy1,. .., ym - F is valid, where we
may assume that ' = V. ¢ with each ¢ a conjunction of literals over X UY U Z with
Z=Az,...,2h X ={z1,...,z,}and Y = {y1,...,ym} (,n,m > 0), see also
[6].

Theorem 6 implies that MOALP’s go beyond the capabilities of the answer set se-
mantics for ordered programs, which are limited to 51" [23]. However, it can be shown
that, if the preferred explanations of the AOLP E = ((R,<Rg), A4, M) all satisfy the
same rules in the ordered theory, an OLP containing both the ordered theory and the
ordered abducibles, using the construction of Definition 7 where T is replaced by P,
will compute the correct preferred explanations of the MOALP.

6 Relationships To Other Approaches

A number of different characterizations for abduction exist, both in the context of logic
and logic programming, e.g. [4, 17, 13, 7, 6]. Early formalizations of abduction used the-
ories in first order logic, while [13] introduced an abductive framework in the context of
logic programming. Later, generalized stable models [8] were introduced as an exten-
sion of the stable model semantics [10] to handle abductive reasoning. Independently,
[9] formalized a similar idea, called the belief set semantics, providing an abductive rea-
soning formalism for systems containing disjunction, negation as failure and classical
negation. In [11, 12] this semantics was used to formalize abductive extended disjunc-
tive programs. Another formalization of abduction for logic programming was given in
[6], using definitions closer to the first order logic approaches. Example 2 illustrates the
difference between [6] and [11,12].

Most approaches suggest the usefulness of a preference relation among explana-
tions, with subset-minimality an obvious candidate, although other orderings have also



been proposed, e.g. cardinality minimal explanations, where preferred explanations are
minimal w.r.t. the number of abducibles in it.

[5] mentions a possible formalization of preferred explanations for a linearly prior-
itized set of abducibles in the context of abduction for classical logic. The more general
preference relation on explanations of Definition 6 reduces to the one used in [5], for
the case where the underlying partial order on abducibles is linear.

Although a variety of proposals exist for extending logic programs with some kind
of preference relation [14, 15, 2,19, 1, 3, 24, 23], we are not aware of any prior work on
abduction for such programs.

Reducing abduction to model computation has been done before, e.g. [18, 20] pro-
vide a different method for transforming abductive logic programs into disjunctive logic
programs, using the possible model semantics, but only for the subset-preferred case.
Section 4 can be regarded as an extension to more general preference relations. More-
over, our approach does not need disjunction to obtain the simulation as it relies on a
single mechanism (order) to simulate both abduction and minimality.

7 Conclusions and Direction for Further Research

We have extended abductive logic programming to systems involving preference, in
either the theory or the set of abducibles. Since such reasoning can be simulated using
EOLP, which is equivalent to OLP (i.e. programs without negation as failure) [21], an
implementation of OLP, e.g. using the algorithms described in [23], can be envisaged
to perform abduction.

References

1. Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2):297-356, April 1999.

2. F. Buccafurri, N. Leone, and P. Rullo. Stable models and their computation for logic pro-
gramming with inheritance and true negation. Journal of Logic Programming, 27(1):5-43,
1996.

3. Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive logic programs with
inheritance. In Danny De Schreye, editor, Logic Programming: The 1999 International Con-
ference, pages 79-93, Las Cruces, New Mexico, December 1999. MIT Press.

4. P.T. Cox and T. Pietrzykowski. General diagnosis by abductive inference. In Proceedings of
the IEEE Symposium on Logic Programming, pages 183-189, 1987.

5. Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. Journal of the
Association for Computing Machinery, 42(1):3-42, 1995.

6. Thomas Eiter, Georg Gottlob, and Nicola Leone. Abduction from logic programs: Semantics
and complexity. Theoretical Computer Science, 189(1-2):129-177, 1997.

7. Thomas Eiter, Georg Gottlob, and Nicola Leone. Semantics and complexity for abduction
from default logic. Artificial Intelligence, 90(1-2):177-222, 1997.

8. K. Eshghi and R.A. Kowalski. Abduction compared with negation by failure. In Proceedings
of the 6th International Conference on Logic Programming, pages 234-254. MIT Press,
1989.

9. Michael Gelfond. Epistemic approach to formalization of commonsense reasoning. Techni-
cal report, University of Texas at El Paso, 1991. Technical Report TR-91-2.



10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Logic Programming, Proceedings of the Fifth International Conference and Symposium,
pages 1070-1080, Seattle, Washington, August 1988. The MIT Press.

Katsumi Inoue and Chiaki Sakama. Transforming abductive logic programs to disjunctive
programs. In Proceedings of the 10th International Conference on Logic Programming,
pages 335-353. MIT Press, 1993.

Katsumi Inoue and Chiaki Sakama. A fixpoint characterization of abductive logic programs.
Journal of Logic Programming, 27(2):107.136, May 1996.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic
and Computation, 2(6):719-770, 1992.

E. Laenens and D. Vermeir. A fixpoint semantics of ordered logic. Journal of Logic and
Computation, 1(2):159-185, 1990.

Els Laenens and Dirk Vermeir. Assumption-free semantics for ordered logic programs: On
the relationship between well-founded and stable partial models. Journal of Logic and Com-
putation, 2(2):133-172, 1992.

Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artificial
Intelligence, 138(1-2):39-54, 2002.

D. Poole. Explanation and prediction: An architecture for default and abductive reasoning.
Computational Intelligence, 5(1):97-110, 1989.

Chiaki Sakama and Katsumi Inoue. On the equivalence between disjunctive and abduc-
tive logic programs. In Pascal Van Hentenryck, editor, Logic Programming, Proceedings
of the Eleventh International Conference on Logic Programming, pages 489-503, Santa
Margherita Ligure, Italy, June 1994. MIT Press.

Chiaki Sakama and Katsumi Inoue. Representing priorities in logic programs. In Michael J.
Mabher, editor, Proceedings of the 1996 Joint International Conference and Syposium on
Logic Programming, pages 82-96, Bonn, September 1996. MIT Press.

Chiaki Sakama and Katsumi Inoue. Abductive logic programming and disjunctive logic
programming: their relationship and transferability. The Journal of Logic Programming,
44(1-3):71-96, 2000.

Davy Van Nieuwenborgh and Dirk Vermeir. Order and negation as failure. Submitted.
Davy Van Nieuwenborgh and Dirk Vermeir. Ordered programs as abductive systems. Tech-
nical report, Vrije Universiteit Brussel, Dept. of Computer Science, 2003.

Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic pro-
grams. In European Workshop, JELIA 2002, volume 2424 of Lecture Notes in Artificial
Intelligence, pages 432-443, Cosenza, Italy, September 2002. Springer Verlag.

Kewen Wang, Lizhu Zhou, and Fangzhen Lin. Alternating fixpoint theory for logic programs
with priority. In CL, volume 1861 of Lecture Notes in Computer Science, pages 164-178,
London, UK, July 2000. Springer.



