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Abstract. Several state-of-the-art systems and languages for constraint solving adopt
a clear separation between the specification of a problem and its instances. Some of
them additionally perform a limited form of reasoning on the spec, with the goal of
choosing the most appropriate solver. In this paper we propose a more sophisticated
form of reasoning on problem specs, with the goal of reformulating them so that they
are more efficiently solvable. To this end, we present a reformulation technique that
highlights constraints that can be safely “delayed”, and solved afterwards. Our main
contribution is the characterization (with soundness proof) of safe-delay constraints
wrt a syntactic criterion on the spec, thus obtaining a mechanism for the automated
reformulation of specs applicable to a great variety of problems, e.g., graph coloring
and job shop scheduling. Another contribution is a preliminary experimentation on
the effectiveness of the proposed technique, which reveals promising time savings.

1 Introduction

Several systems and languages for the solution of constraint problems adopt
a clear separation between the specification of a problem, e.g., graph three-
coloring, and its instance, e.g., a graph. On top of that, they use a two-level
architecture for finding solutions: the specification is instantiated against the
instance, and then an appropriate solver is invoked. Examples of systems of
such kind are ampl [11], opl [20], gams [5], dlv [9], smodels [18], and np-

spec [4].
The major benefit of this separation is the decoupling of the solver from

the specification. Ideally, the programmer can focus only on the specification
of the problem, without committing a priori to a specific solver. In fact, some
systems, e.g., ampl, are able to translate –at the request of the user– a spec
in various formats, suitable for different solvers.

Some systems go one step further, and offer a limited form of reasoning

on the specification, with the goal of choosing the most appropriate solver
for a problem. As an example, the opl system checks whether a specification
contains only linear constraints and objective function, and in this case invokes
an integer linear programming solver (typically very efficient); otherwise, it
uses a constraint programming solver.

In this paper we propose a more sophisticated architecture, in which rea-
soning on the specification is more complex. Our goal is to reformulate the
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Fig. 1. Delaying the disjointness constraint in 3-coloring

specification so that the later stages of computation, i.e., instantiation and
solution, are more efficient. We get inspiration from the relational database
technology, since it is well-known that reformulating queries –independently
on the database– may result in greater efficiency. As an example, making selec-
tions as soon as possible is a simple heuristic that typically allows to decrease
the number of accesses to disk (cf., e.g., [1]).

Reformulation is quite difficult in general: a specification is essentially a
formula in second-order logic, and it is well-known that the equivalence prob-
lem is undecidable already in the first-order case [3]. For this reason we limit
our attention on restricted forms of reformulation, and, more specifically, we
focus on a reformulation that selects constraints that can be safely “delayed”,
and solved afterwards.

The NP-complete graph k-coloring problem offers a simple example of a
constraint of this kind. The problem amounts to find an assignment of nodes
to k colors such that:

– Each node has at least one color (covering);
– Each node has at most one color (disjointness);
– Adjacent nodes have different colors (good coloring).

For each instance of the problem, if we obtain a solution neglecting the dis-
jointness constraint, we can always choose for each node one of its colors in
an arbitrary way in a later stage (cf. Fig. 1). We call a constraint with this
property a safe-delay constraint.

Of course not all constraints are safe-delay: as an example both the covering
and the good coloring constraints are not. Intuitively, identifying the set of
constraints of a specification which are safe-delay offers several advantages:

– The instantiation phase will be faster, since safe-delay constraints are not
taken into account.

– Solving the simplified problem, i.e., the one without disjointness, might be
easier than the original formulation. In our (even if preliminary) experi-
ments, using a SAT solver, we obtained a fairly consistent (in some cases,
more than one order of magnitude) speed-up for hard instances of various
problems, e.g., graph coloring and job shop scheduling. On top of that, we
implicitly obtain several good solutions.
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– Ad hoc efficient methods for solving delayed constraints may exist. In fact,
the problem of choosing only one color for the nodes with more than one
color is O(n).

The architecture we propose is illustrated in Fig. 2 and can be applied to
any system which separates the instance from the specification. It is in some
sense similar to the well-known divide and conquer technique, but rather than
dividing the instance, we divide the constraints. In general, the first stage
will be more computationally expensive than the second one, which, in our
proposal, will always be doable in polynomial time.

The goal of this paper is to understand in which cases a constraint is safe-
delay. Our main contribution is the characterization of safe-delay constraints
with respect to a syntactic criterion on the specification. This allows us to
obtain a mechanism for the automated reformulation of a specification (shown
in Sec. 3) that can be applied to a great variety of problems, including the
so-called functional ones.

Another contribution is an experimentation on the effectiveness of the pro-
posed reformulation, shown in Sec. 4, on both benchmark and randomly gen-
erated instances. Finally, a discussion on the adopted methodology is given in
Sec. 5, while conclusions and related work are described in Sec. 6.

Other researchers have dealt with delaying constraints on instantiated prob-
lems, as an example, CLP(R) delays evaluation of non-linear constraints. What
characterizes our contribution (cf. Sec. 6) is a study of safe-delaying performed
on specifications.

2 Preliminaries

For the specification of problems, in this paper we use existential second-order

logic (ESO), which allows to represent all search problems in the complexity
class NP [10]. The use of ESO as a modelling language for problem specs is
common in the database literature, but unusual in constraint programming,



therefore few comments are in order. Constraint modelling systems like those
mentioned in Sec. 1 have a richer syntax and more complex constructs, and
we plan to eventually move from ESO to such languages. For the moment,
we claim that studying the simplified scenario is a mandatory starting point
for more complex investigations, and that our results can serve as a basis
for reformulating specs written in higher-level languages. In Sec. 5 we discuss
further our choice.

Coherently with all state-of-the-art systems, we represent an instance of
a problem by means of a relational database. All constants appearing in a
database are uninterpreted, i.e., they don’t have a specific meaning.

In the following, σ denotes a fixed set of relational symbols not including
equality “=”, and S1, . . . , Sh denote variables ranging over relational symbols
distinct from those in σ ∪ {=}. By Fagin’s theorem [10], any collection D of
finite databases over σ is recognizable in NP time iff it is defined by an ESO
formula of the kind:

∃S1, . . . , Sh φ, (1)

where S1, . . . , Sh are relational variables of various arities and φ is a function-
free first-order formula containing occurrences of relational symbols from σ ∪
{S1, . . . , Sh}∪{=}. The symbol “=” is always interpreted in the obvious way,
i.e., as “identity”.

A database D is in D iff there is a list of relations Σ1, . . . , Σh (matching the
list of relational variables S1, . . . , Sh) which, along with D, satisfies formula
(1), i.e., such that (D,Σ1, . . . , Σh) |= φ. The tuples of Σ1, . . . , Σh must take
elements from the Herbrand universe of D, i.e., the set of constant symbols
occurring in it.

Example 1. In the “three-coloring” NP-complete decision problem (cf. [14,
Prob. GT4, p. 191]) the input is a graph, and the question is whether it is
possible to give each of its nodes one out of three colors (red, green, and blue),
in such a way that adjacent nodes (not including self-loops) are never colored
the same way. The question can be easily specified as an ESO formula ψ over
a binary relation edge:

∃RGB

∀X R(X) ∨G(X) ∨ B(X) ∧ (2)

∀X R(X) → ¬G(X) ∧ (3)

∀X R(X) → ¬B(X) ∧ (4)

∀X B(X) → ¬G(X) ∧ (5)

∀XY X 6= Y ∧R(X) ∧ R(Y ) → ¬edge(X, Y ) ∧ (6)

∀XY X 6= Y ∧G(X) ∧G(Y ) → ¬edge(X, Y ) ∧ (7)

∀XY X 6= Y ∧B(X) ∧ B(Y ) → ¬edge(X, Y ), (8)



where clauses (2), (3-5), and (6-8) represent the covering, disjointness, and
good coloring constraints, respectively.

Referring to the graph in Fig. 1, the Herbrand universe is the set {a, b, c, d, e},
the input database has only one relation, i.e., edge, which has five tuples (one
for each edge). Formula ψ is satisfied if R, G, and B are assigned to, e.g., the
following relations (cf. Fig. 1, right):

R d
G a

e
B b

c

In what follows, existentially quantified predicates (like R, G, and B) will
be called guessed, and the set of tuples from the Herbrand universe they take
will be called their extension and denoted with ext(). As an example, ext(G) =
{a, e} in the previous example. The symbol ext() will be used also for any
first-order formula with one free variable. An interpretation will be sometimes
denoted as the aggregate of several extensions.

3 Reformulation

In this section we show sufficient conditions for constraints of a specification
to be safe-delay. We refer to the architecture of Fig. 2, with some general
assumptions:

1. As shown in Fig. 1, the output of the first stage of computation may –
implicitly– contain several solutions. In the second stage we do not want
to compute all of them, but just to arbitrarily select one.

2. The second stage of computation can only shrink the extension of a guessed
predicate. Fig. 3 represents the extensions of the red predicate in the first
(R∗) and second (R) stages of Fig. 1 (ext(B) and ext(G) are unchanged).
This assumption is coherent with the way most algorithms for constraint
satisfaction operate: each variable has an associated finite domain, from
which values are progressively eliminated, until a satisfying assignment is
found.

Identification of safe-delay constraints requires reasoning on the whole spec-
ification, taking into account relations between guessed and database predi-
cates. For the sake of simplicity, we will initially focus our attention on a single

monadic guessed predicate, trying to figure out which constraints concerning
it can be delayed. Afterwards, we extend our results to sets of monadic guessed
predicates, then to binary predicates.

3.1 Single monadic predicate

We refer to the 3-coloring specification of Example 1, focusing on the guessed
predicate R, and trying to find an intuitive explanation for the fact that clauses
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Fig. 3. Extensions for the 3-coloring spec

(3-4) can be delayed. We immediately note that clauses in the specification can
be partitioned into three subsets:

NO: R does not occur in them, i.e., (5,7,8);
NEG: R occurs negatively in them, i.e., (3,4,6);
POS: R occurs positively in them, i.e., (2).

Neither NO nor NEG clauses can be violated by shrinking the extension of
R. Such constraints will be called safe-forget for R, because if we decide to
process (and satisfy) them in the first stage, they can be safely ignored in the
second one. We note that this is just a possibility, and we are not obliged to
do that: as an example, clauses (3-4) will not be processed in the first stage.

Although in general POS clauses are not safe-forget –because shrinking
the extension of R can violate them– we now show that clause (2) it is. In
fact, if we equivalently rewrite clauses (2) and (3-4), respectively, as follows:

∀X ¬B(X) ∧ ¬G(X) → R(X) (2)′

∀X R(X) → ¬B(X) ∧ ¬G(X), (3 − 4)′

we note that clause (2)′ sets a lower bound for the extension of R, and clauses
(3-4)′ set an upper bound for it; both the lower and the upper bound are
ext(¬B(X) ∧ ¬G(X)). If we use –in the first stage– clauses (2,5-8) for com-
puting ext(R∗), then –in the second stage– we can safely define ext(R) as
ext(R∗)∩ext(¬B(X)∧¬G(X)), and no constraint will be violated (cf. Fig. 3).
Next theorem shows that is not by chance that the antecedent of (2)′ is se-
mantically related to the consequence of (3-4)′.

Theorem 1. Let Φ be an ESO formula of the form:

∃S1, . . . , Sh, R Ξ ∧ ∀X α(X) → R(X) ∧ ∀X R(X) → β(X), (9)

where Ξ is a conjunction of clauses, both α and β are arbitrary formulae in

which R does not occur and X is the only free variable, and it holds that:

Hyp 1: R either does not occur or occurs negatively in Ξ;



Hyp 2: |= ∀X α(X) → β(X).

Let Φs be:

∃S1, . . . , Sh, R
∗ Ξ∗ ∧ ∀X α(X) → R∗(X),

where R∗ is a new predicate symbol, and Ξ∗ is Ξ with R replaced by R∗. Let

Φd be:

∀X R(X) ↔ R∗(X) ∧ β(X).

For each database D and each list M s of extensions for (S1, . . . , Sh, R
∗) such

that (D,M s) |= Φs, then (D,M s − ext(R∗), ext(R)) |= Φ, where ext(R) is the

extension of R as defined by M s and Φd.

Referring to Fig. 2, Φ is the spec, D is the instance, Φs is the “simplified
spec”, and ∀X R(X) → β(X) is the “delayed constraint”. Solving Φs againstD
produces –if the instance is satisfiable– a list of extensions M s (the “output”).
Evaluating Φd against M s corresponds to the “PostProcessing” phase in the
second stage; since the last stage amounts to the evaluation of a first-order
formula against a fixed database, it can be done in logarithmic space (thus in
polynomial time).

In other words, the theorem says that, for each satisfiable instance D of the
simplified specification Φs, each solution M s of Φs can be translated, via Φd, to
a solution of the original specification Φ; we can also say that Ξ∧∀X α(X) →
R(X) is safe-forget, and ∀X R(X) → β(X) is safe-delay.

Referring to the specification of Example 1, Ξ is the conjunction of clauses
(5-8), and α(X) and β(X) are both ¬B(X)∧¬G(X), cf. clauses (3-4)′. Fig. 3
represents possible extensions of the red predicate in the first (R∗) and second
(R) stages, for the instance of Fig. 1.

Proofs are omitted for lack of space. As evidence for the soundness of
Theorem 1, we claim that Fig. 4 (left) shows that, if Hyp 2 holds, then the
constraint ∀X α(X) → R(X) can never be violated in the second stage.

We are guaranteed that the two-stage process preserves at least one solution
of Φ by the following proposition.

Proposition 1. Let D, Φ, Φs and Φd as in Theorem 1. For each database D,

if Φ is satisfiable, Φs and Φd are satisfiable.

To substantiate the reasonableness of the two hypotheses of Theorem 1, we play
the devil’s advocate and add to the specification of Example 1 the constraint

∀X edge(X,X) → R(X), (10)

saying that self-loops must be red. We immediately notice that now clauses
(3-4) are not safe-delay: intuitively, after the first stage, nodes may be red
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either because of (2) or because of (10), and (3-4) are not enough to set the
correct color for a node.

Now, if –on top of (5-8)– Ξ contains also the constraint (10), Hyp 1 is
clearly not satisfied. Analogously, if (10) is used to build α(X), then α(X)
becomes edge(X,X)∨ (¬B(X) ∧ ¬G(X)), and Hyp 2 is not satisfied. Fig. 4,
right, gives further evidence that the constraint ∀X α(X) → R(X) can be
violated if ext(R) is computed using Φd and ext(α) is not a subset of ext(β).

Some further comments about Theorem 1 are in order.

– Ξ does not need to be a conjunction of clauses, but can be any formula
such that, from any structure M s.t. M |= Ξ, shrinking ext(R) and keeping
everything else fixed we obtain another model of Ξ. As an example, Ξ may
contain the conjunct ∃X R(X) → G(X).

– Although Hyp 2 calls for a tautology check –which is not decidable in
general– we will see in what follows that many specifications satisfy it by

design.

3.2 Set of monadic predicates

Theorem 1 can be applied recursively to the specification Φs, by focusing on
a different guessed predicate, in order to obtain a new simplified specification
(Φs)s and new delayed constraints (Φs)d. Since, by Proposition 1, satisfiability
of such formulae is preserved, it is afterwards possible to translate, via (Φs)d,
each solution of (Φs)s to a solution of Φs, and then, via Φd, to a solution of Φ.

The procedure Reformulate deals with the general case of a set of
guessed predicates: if the input specification Φ is satisfiable, it returns a sim-
plified spec Φs and a list of delayed constraints Φd. Algorithm SolveByDe-

laying gets any solution of Φs and translates it, via the evaluation of formulae
in the list Φd –with LIFO policy– to a solution of Φ.

Algorithm SolveByDelaying

Input a specification Φ, a database D

Output a solution of 〈D, Φ〉, if satisfiable; ‘unsatisfiable’, otherwise;
begin

〈Φs, Φd〉 = Reformulate(Φ);



if (〈Φs, D〉 is satisfiable) then

begin

let M be a solution of 〈Φs, D〉;

while (Φd is not empty) do

begin

Constraint d = Φd.pop();
M = M∪ solution of d; // cf. Theorem 1

end;
return M ;

end;
else return ‘unsatisfiable’;

end;

Procedure Reformulate

Input a specification Φ

Output 〈Φs, Φd〉, where Φs is a simplified spec, and Φd is a stack of delayed constraints
begin

Stack Φd = the empty stack;

Φs = Φ;

for each monadic guessed predicate R in Φs do

begin

partition constraints in Φs according to Theorem 1, in
〈Ξ; ∀X α(X) → R(X); ∀X R(X) → β(X)〉;
if (previous step is possible with ∀X β(X) 6= true) then

begin

Φd.push(‘∀X R(X) ↔ R∗(X) ∧ β(X)’);

Φs = Ξ∗ ∧ ∀X α(X) → R∗(X);
end;

end;

return 〈Φs, Φd〉;
end;

As an example, we evaluate the procedure Reformulate on the spec of
Example 1, by focusing on the guessed predicates in the order R,G,B. The
output is the following simplified specification Φs:

∃R∗G∗B ∀X R∗(X) ∨G∗(X) ∨ B(X) ∧

∀XY X 6= Y ∧R∗(X) ∧R∗(Y ) → ¬edge(X, Y ) ∧

∀XY X 6= Y ∧G∗(X) ∧G∗(Y ) → ¬edge(X, Y ) ∧

∀XY X 6= Y ∧B(X) ∧ B(Y ) → ¬edge(X, Y ),

and the following list Φd of delayed constraints:

∀X R(X) ↔ R∗(X) ∧ ¬G(X) ∧ ¬B(X); (11)

∀X G(X) ↔ G∗(X) ∧ ¬B(X). (12)

Note that the check that ∀X β(X) is not a tautology prevents the (useless)
delayed constraint ∀X B(X) ↔ B∗(X) to be pushed in Φd.

From any solution of Φs, a solution of Φ is obtained in the while loop of
SolveByDelaying by reconstructing first of all the extension for G by for-
mula (12), and then the extension for R by formula (11) (synthesized, respec-
tively, in the second and first iteration of the algorithm). Since each constraint



in the stack Φd is first-order, the whole while loop is doable in logarithmic
space.

We observe that the procedure Reformulate is intrinsically non-deter-
ministic, because of the partition that must be applied to the constraints.

3.3 Binary predicates

The specification of the k-coloring problem using a binary predicate Col –
the first argument being the node and the second the color– is as follows
(constraints represent, respectively, covering, disjointness, and good coloring).

∃Col ∀X ∃Y Col(X, Y ) ∧

∀XY Z Col(X, Y ) ∧ Col(X,Z) → Y = Z ∧ (13)

∀XY Z X 6= Y ∧ Col(X,Z) ∧ Col(Y, Z) → ¬edge(X, Y ).

Since the number of colors is finite, it is always possible to unfold the above
constraints with respect to the second argument of Col. As an example, if
k = 3, we obtain –up to an appropriate renaming of the Col predicate– the
spec of Example 1.

The above considerations imply that we can use the architecture of Fig. 2
for a large class of specifications.

Definition 1. A safe-delay functional spec is an ESO formula of the form:

∃P Ξ ∧ ∀X ∃Y P (X, Y ) ∧ ∀XY Z P (X, Y ) ∧ P (X,Z) → Y = Z,

where Ξ is a conjunction of clauses in which P either does not occur or occurs

negatively.

The term “functional” originates from covering and disjointness constraints,
which imply a search space which is a (total) function from a finite domain
to a finite codomain. In particular, the disjointness constraints are safe-delay,
while the covering and the remaining ones, i.e., Ξ, are safe-forget. Formally,
soundness of the architecture on safe-delay functional formulae is guaranteed
by Theorem 1 and algorithm SolveByDelaying.

Safe-delay functional specs are quite common; apart from graph coloring,
a notable example (formal details omitted) is Job shop scheduling [14, Prob.
SS18]: there are n jobs, m tasks, and p processors. Jobs are ordered collections
of tasks and each task has an integer-valued length and the processor that
performs it. Each processor can perform a task at the time, and the tasks
belonging to the same job must be performed in their order. Finally, there is
a global deadline D that has to be met by all jobs. The disjointness constraint
imposes at most one starting time for each task: thus, by applying Theorem 1
for delaying it, we allow a task to have multiple starting times, all of them
being good ones. In the PostProcessing stage we can arbitrarily choose one of
them to obtain a solution of the original problem.



4 Experimental results

We made a preliminary experimentation of our reformulation techniques on 3-
coloring (randomly generated instances), k-coloring (instances taken from the
DIMACS benchmark repository ftp://dimacs.rutgers.edu/pub/challenge),
and job shop scheduling (benchmark instances taken from the OR library at
www.ms.ic.ac.uk/info.html). According to the results of Sec. 3, we solved
each instance both with and without delaying the disjointness constraints. The
specifications were instantiated against the instances using ad hoc programs,
thus obtaining SAT instances. As for the solver, we used the DPLL-based SAT
system satz, described in [17].

Few methodological comments are mandatory. It is well-known that the
benchmark problems we refer to can be efficiently solved either by means of
ad hoc algorithms or by using constraint programming languages in a so-
phisticated way. Our purpose here is not to propose an efficient method for
problem solving, but rather to prove that we can achieve a consistent speed-
up by means of a mere reformulation of a purely declarative spec, even if in
a language –ESO– with no built-in constructs for functions or integers. So,
the experimentation should be considered only as a preliminary stage to test
whether the reformulation approach we propose is promising or not.

Experiments were executed on a SparcStation Ultra2 and on a Pentium 4.
The size of instances was chosen so that our machine is able to solve (most of)
them in more than few seconds, and less than 30 minutes. In this way, both
instantiation and postprocessing, i.e., evaluation of delayed constraints, times
are negligible, and comparison can be done only on SAT time.

Summing up, we solved several thousands of instances. It is worth noting
that in all of them the SAT time without disjointness is less than or equal to
the time with disjointness. In what follows, we refer to the saving percentage,
defined as the ratio:

(time with disjointness − time without disjointness)/time with disjointness.

3-coloring We solved the problem on 3,500 randomly generated graph in-
stances with 430 nodes each. The number of edges varies, and covers the phase
transition region [7]: the ratio (# of directed edges/# of nodes) varies between
2 and 6. The average solving time (150 instances for each fixed number of edges)
varies between fractions of a second and 210 seconds. The saving percentage
varies between 15% and 50%, the hardest instances being at 30%.

k-coloring Our results are shown in Table 1 (n is the number of nodes and e

of the edges). The saving percentage varies between 9.6% and 55%.

Job shop scheduling We considered two instances known as FT06 (36 tasks, 6
jobs, 6 processors, solvable with deadline 55) and LA02 (50 tasks, 10 jobs, 5



Table 1. Solving times for k-coloring

SAT time (secs)
Graph Nodes Edges Colors With disj. Without disj. % saving

DSJC250.1 250 6436 9 8.16 4.99 38.9
le450 5a 450 5714 5 492.93 428.78 13.0
le450 5b 450 5734 5 434.05 378.45 12.8
le450 5c 450 9803 5 22.45 20.02 10.8
le450 5d 450 9757 5 29.78 26.93 9.6
miles500 128 2340 20 8.36 3.76 55.0
queen9 9 81 2112 10 175.54 137.45 21.7

queen10 10 100 2940 20 7.00 4.16 40.6
queen12 12 144 5192 15 8.25 6.12 25.8

processors, solvable with deadline 655). SAT solving times are listed in Table 2
for different values for the deadline. As it can be observed, the saving is quite
consistent (‘–’ means that SAT with disjointness constraints did not terminate
in 21 hours).

Table 2. Solving times for job shop scheduling

SAT time (secs)
Instance Deadline Solvable? With disj. Without disj. % saving

FT06 55 Y 7.80 3.07 60.6
FT06 54 N 29.23 7.59 74.0
LA02 960 Y 40.13 3.39 91.5
LA02 860 Y 1308.63 15.60 98.8
LA02 840 Y – 76.36 ∼100

5 Methodological discussion

In this section we make a discussion on the methodology we adopted in this
work: the use of ESO as a modelling language, and the use of a SAT solver for
the experimentation.

Using ESO for specifying problems wipes out many aspects of state-of-the-
art languages which are somehow difficult to take into account (e.g., numbers,
arithmetics, constructs for functions, etc.), thus simplifying the task of finding
syntactic criteria for reformulating problem specs. As mentioned before, we
plan to study richer languages (mentioned in Sec. 1) in a further stage.

However, it must be observed that ESO, even if somewhat limited, is not
too far away from the modelling languages provided by some commercial sys-
tems. An example of such a language is ampl which admits only linear con-
straints: in this case, the reformulation technique described in Theorem 1 can



often be straightforwardly applied; for instance, a reasonable spec of the k-
coloring problem in such a language is the following:

param n nodes; param n colors integer, > 0;
set NODES := 1..n nodes; set EDGES within NODES cross NODES;
set COLORS := 1..n colors;
var Coloring {NODES,COLORS} binary; # Coloring as a binary predicate
s.t. CoveringAndDisjointness {x in NODES}:

sum {c in COLORS} Coloring[x,c] = 1; # nodes have exactly one color
s.t. GoodColoring {(x,y) in EDGES, c in COLORS}:

Coloring[x,c] + Coloring[y,c] <= 1; # nodes linked by an edge have diff. colors

The above spec is similar to (13), and the reformulated spec can be obtained
by rewriting the “CoveringAndDisjointness” constraint in the following way:

s.t. Covering {x in NODES}
sum {c in COLORS} Coloring[x,c] >= 1;

For what concerns the experimentation stage, it is worthwhile to mention that
a spec written in ESO naturally leads to a translation into a SAT instance. In
this sense, the use of a SAT solver should not be considered as the ultimate
goal of our research: state-of-the-art systems and languages usually perform
much better on the kind of problems of Sec. 4 (although other problems,
e.g., planning ones [15], can be efficiently solved by SAT). Actually, it has to
be considered only as a starting point of our research, and an encouraging
evidence of the reasonableness of the proposed approach. A more complex
experimentation using state-of-the-art systems as those listed in Sec. 1 will be
conducted soon to understand whether the technique discussed so far and its
variants are applicable in the new contexts. Linear solvers like cplex (which,
e.g., ampl can use) will be particularly useful, due to the considerations made
above.

6 Conclusions, related and future work

In this paper we have shown a simple reformulation architecture and proven
its soundness for a large class of problems. The reformulation allows to delay
the solution of some constraints, which results in faster solving. In this way,
we have shown that reasoning on a spec can be very effective.

Related work Several researchers addressed the issue of reformulation of a
problem after the instantiation phase. As an example, in [12] it is shown that
abstracting problems by simplifying constraints is useful for finding more ef-
ficient reformulations of the original problem; abstraction may require back-
tracking for finding solutions of the original problem. In our work, we focus on
reformulation of the spec, and the approach is backtracking-free: once the first
stage is completed, a solution will surely be found by evaluating the delayed
constraints.



Analogously, in [22] it is shown how to translate an instantiated CSP into
its boolean form, which is useful for finding different reformulations. Finally, in
[8] it is shown how to generate a conjunctive decomposition of an instantiated
CSP, by localizing independent subproblems.

Other papers investigate the best way to encode an instance of a problem
into a format adequate for a specific solver. As an example, many different
ways for encoding graph coloring or permutation problems into SAT have been
figured out, cf., e.g., [13, 21]. Conversely, in our work we take a specification-
oriented approach.

Finally, we point out that a logic-based approach has also been successfully
adopted in the ‘80s to study the query optimization problem for relational DBs.
Analogously to the approach presented in this paper, the query optimization
problem has been attacked relying on the query (i.e., the spec) only, with-
out considering the database (i.e., the instance), and it was firstly studied in
a formal way using first-order logic (cf., e.g., [2, 6, 16, 19]). In a later stage,
the theoretical framework has been translated into rules for the automated
rewriting of queries expressed in languages and systems used in real world.

Future work In this paper we have focused on a form of reformulation which
partitions the first-order part of a spec. This basic idea can be generalized, as
an example by evaluating in both stages of the computation a constraint (as an
example (10)), in order to allow reformulation for a larger class of specs. Even
more generally, the second stage may amount to the evaluation of a second-
order formula. In the future, we plan –with a more extensive experimentation–
to check whether such generalizations are effective in practice.

Moreover, we wish to extend our results to the so-called permutation prob-
lems, i.e., problems which, on top of the constraints of Definition 1 have also
the following constraints:

∀X ∃Y P (Y,X) ∧ ∀XY Z P (Y,X) ∧ P (Z,X) → Y = Z.

However, this kind of specs do not belong to the class studied in this paper,
and a generalization of Theorem 1 is needed to support them.

Permutation problems arise frequently in theory and practice: examples
are the n-queens, the Hamiltonian circuit, and the code generation for parallel

assignments (resp. [14, Prob. GT39, PO6]) problems.
Finally, it is our goal to move the above described and forecoming theo-

retical results into rules for automatically reformulate problem specs given in
much more complex languages, e.g. ampl and opl, which have higher-level
built-in constructs, such as integers and functions.
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