
In: Informal Proc. 2003 Joint Conference on Declarative Programming (AGP
2003), September 3-5, 2003, Reggio Calabria Italy. c© by the authors.

Transforming co-NP Checks to Answer Set
Computation by Meta-Interpretation?

Thomas Eiter and Axel Polleres

Institut für Informationssysteme, TU Wien, A-1040 Wien, Austria
{eiter,polleres}@kr.tuwien.ac.at

Abstract. Many NP-complete problems can be encoded in the answer
set semantics of logic programs in a very concise way, where the en-
coding reflects the typical “guess and check” nature of NP problems:
The property is encoded in a way such that polynomial size certificates
for it correspond to stable models of a program. However, the problem-
solving capacity of full disjunctive logic programs (DLPs) is beyond NP
at the second level of the polynomial hierarchy. While problems there
also have a “guess and check” structure, an encoding in a DLP is often
non-obvious, in particular if the “check” itself is co-NP-complete; usually,
such problems are solved by interleaving separate “guess” and “check”
programs, where the check is expressed by inconsistency of the check pro-
gram. We present general transformations of head-cycle free (extended)
logic programs into stratified disjunctive logic programs which enable
one to integrate such “guess” and “check” programs automatically into
a single disjunctive logic program. Our results complement recent results
on meta-interpretation in ASP, and extend methods and techniques for
a declarative “guess and check” problem solving paradigm through ASP.

1 Introduction

Answer set programming (ASP) [15, 7] is widely proposed as a useful tool for
expressing properties in NP, where solutions and polynomial time proofs for
such properties correspond to answer sets of normal logic programs, which cover
by well-known complexity results the class NP. An example for such a property
is whether some given graph has a legal 3-coloring, where any such coloring is
itself a certificate for this property.

However, we also might encounter situations in which we want to express a
problem which is complementary to some NP problem, and thus belongs to the
class co-NP; it is widely believed that in general, not all such problems are in
NP and hence not always a polynomial-size certificate checkable in polynomial
time exists. One such problem is for instance the property that a graph is not
3-colorable. Such properties p can analogously be expressed by a normal logic
program (equivalently, by a head-cycle free disjunctive logic program [1]) Πp,
where the property holds iff Πp has no answer set at all.

Checks in co-NP typically occur as subproblems within more complex prob-
lems which have complexity higher than NP, for instance:

? Supported by FWF (Austrian Science Funds) projects P14781 and Z29-N04 and Eu-
ropean Commission grants FET-2001-37004 WASP and IST-2001-33570 INFOMIX.

Quantified Boolean Formulas (QBFs): Evaluating a QBF, where we have
to check, given a QBF of the form ∃X∀Y Φ(X, Y), and an assignment σ to the
variables X, whether ∀Y Φ(σ(X), Y) evaluates to true.
Strategic Companies: Checking whether a set of companies is strategic (cf. [9]).
Conformant Planning: Checking whether a given plan is conformant [8], pro-
vided executability of actions is polynomially decidable (cf. [4, 18]).

Further examples can be found in [6, 5]. In general, the corresponding logic
program Πp for this check can be easily formulated and the overall problem
(evaluating the QBF, finding a strategic companies set resp. a conformant plan)
solved in a 2-step approach:
1. Generate a candidate solution by means of a logic program Πguess.
2. Check the solution by another logic program Πcheck (=Πp).

However, it is often not clear how to combine Πguess and Πcheck into a sin-
gle program Πsolve which solves the overall problem. Simply taking the union
Πguess ∪Πcheck does not work, and rewriting is needed. Theoretical results [6]
informally give strong evidence that for problems with ΣP

2 -complexity, it is re-
quired that Πcheck (given as a normal logic program or a head-cycle free disjunc-
tive logic program) is rewritten into a disjunctive logic program Π ′

check such that
the answer sets of Πsolve = Πguess ∪Π ′

check yield the solutions of the problem,
where Π ′

check emulates the inconsistency check for Π ′
check as a minimal model

check, which is co-NP-complete for disjunctive programs. This becomes even
more complicated by the fact that Π ′

check must not crucially rely on the use of
negation, since it is essentially determined by the Πguess part. These difficulties
can make rewriting Πcheck to Π ′

check a formidable and challenging task.
In this paper, we present a generic method for rewriting Πcheck automatically

by using a meta-interpreter approach. Our main contributions are:
(1) We provide a polynomial-time transformation tr(Π) from propositional
head-cycle-free [1] (extended) disjunctive logic programs (HDLPs) Π to dis-
junctive logic programs (DLPs), such that the following conditions hold:
T1 Each answer set S′ of tr(Π) corresponds to an answer set S of Π, such that

S = {l | inS(l) ∈ S′} for some predicate inS(·).
T2 If the original program has no answer sets, then tr(Π) has exactly one

designated answer set Ω, which is easily recognizable.
T3 The transformation is of the form tr(Π) = F (Π)∪Πmeta, where F (Π) is a

factual representation of Π and Πmeta is a fixed meta-interpreter.
T4 tr(Π) is modular (at the syntactic level), i.e., tr(Π) =

⋃
r∈Π tr(r) holds.

Moreover, tr(Π) returns a stratified DLP [16, 17] which uses negation only
in its “deterministic” part.

We also describe optimizations and a transformation to positive DLPs, and show
that in a precise sense, modular transformations to such programs do not exist.
(2) We show how to use tr(·) for integrating separate guess and check programs
Πguess and Πcheck, respectively, into a single DLP Πsolve such that the answer
sets of Πsolve yield the solutions of the overall problem.
(3) We demonstrate the method on the examples of QBFs and conformant
planning [8] under fixed polynomial plan length (cf. [4, 18]), where our method
proves to loosen some restrictions of previous encodings.

2

Our results contribute to deepen the understanding of the guess and check
programming paradigm for ASP, and fill a gap by providing an automated con-
struction for integrating guess and check programs. Note that integrated encod-
ings may be straight subject to automated program optimization, which consid-
ers both the guess and check part as well as their interaction; this is not possible
for separate programs. Furthermore, our results complement recent results about
meta-interpretation techniques in ASP, cf. [12, 2, 3].

2 Preliminaries

We assume that the reader is familiar with logic programming and answer set
semantics (see [7, 15]) and only briefly recall the necessary concepts.

A literal is an atom a(t1, . . . , tn),or its negation ¬a(t1, . . . , tn), where “¬”
(alias, “–”) is the strong negation symbol, in a function-free first-order language
with at least one constant, which is customarily given by the programs consid-
ered. By |a| = |¬a| = a we denote the atom of a literal. Extended disjunctive
logic programs (EDLPs; or simply programs) are finite sets Π of rules r

h1v . . . v hl :- b1, . . . , bm, not bm+1, . . . not bn. (1)

l,m, n ≥ 0, where each hi and bj is a literal and not is weak negation (negation as
failure). By H(r) = {h1, . . . hl}, B+(r) = {b1, . . . , bm}, B−(r) = {bm+1, . . . , bn},
and B(r) = B+(r)∪B−(r) we denote the head and (pos., resp. neg.) body of rule
r. Rules with |H(r)|=1 and B(r)=∅ are facts and rules with H(r)=∅ constraints.
We omit “extended” in what follows and refer to EDLPs as DLPs etc.

Literals (resp. rules, programs) are ground if they are variable-free. Non-
ground rules (resp. programs) amount to their ground instantiation, i.e., all rules
obtained by substituting variables with constants from the (implicit) language.

Rules (resp. programs) are positive, if “not” does not occur in them and
normal, if |H(r)| ≤ 1. A ground program Π is head-cycle free [1], if no literals
l 6= l′ occurring in the same rule head mutually depend on each other by positive
recursion; Π is stratified [16, 17], if no literal l depends by recursion through
negation on itself (counting disjunction as positive recursion).

Recall that the answer set semantics [7] for DLPs is as follows. Denote by
Lit(Π) the set of all ground literals for a program Π. Then, S is an answer set
of Π, if S is a minimal (under ⊆) consistent1 set S ⊆ Lit(Π) satisfying all rules
in the reduct ΠS , which contains all rules h1 v . . . v hl :- b1, . . . , bm for all
ground instances of rules (1) in Π such that S ∩B−(r) = ∅.

3 Meta-Interpreter Transformation

As mentioned above, a rewriting of a given program Πcheck to a program Π ′
check

for integrating a guess and a check part into a single program is tricky in general.
The working of the answer set semantics is not easy to be emulated in Π ′

check,
since essentially we lack negation in Π ′

check: Upon a “guess” S for an answer set

1 For our concerns, we disregard a possible inconsistent answer set.

3

of Πsolve = Πguess ∪Π ′
check, the reduct ΠS

solve is not-free. Contrary to Πcheck,
there is no possibility to consider varying guesses for the value of negated atoms
in Π ′

check in combination with one guess for the negated atoms in Πguess – all
we have is a one in one combination. And, if there is no disjunction in Π ′

check

then Πsolve is Horn; thus, its answer sets can be guessed and checked in NP.
This leads us to consider an approach in which the program Π ′

check is con-
structed by the use of meta-interpretation techniques [12, 2, 3]: the idea is that a
program Π is represented by a set of facts, F (Π), which is input to a fixed pro-
gram Πmeta, the meta-interpreter, such that the answer sets of Πmeta ∪ F (Π)
correspond to the answer sets of Π. Note that existing meta-interpreters are
normal logic programs, and can not be used for our purposes for the reasons ex-
plained above; we have to construct a novel meta-interpreter which is essentially
not-free and contains disjunction. To this end, we exploit the following charac-
terization of (consistent) answer sets for HDLPs by Ben-Eliyahu and Dechter [1]:

Theorem 1. For any ground HDLP Π, a consistent S ⊆ Lit(Π) is an answer
set iff (1) S satisfies Π and (2) there is a function φ : Lit(Π) → N such that for
each literal l∈S, there is a rule r∈Π with (a) B+(r) ⊆ S , (b) B−(r) ∩ S = ∅,
(c) l ∈ H(r), (d) S ∩ (H(r) \ {l}) = ∅, (e) φ(l′) < φ(l) for each l′ ∈ B+(r).

Theorem 1 will now serve as a basis for a transformation from a given HDLP Π
to a DLP tr(Π) = F (Π)∪Πmeta such that tr(Π) fulfills the properties T1–T4:

Input representation F (Π) As input for the meta-interpreter Πmeta below,
we choose the following representation F (Π) of the propositional program Π.

We assume that each rule r has a unique name n(r); for convenience, we
identify r with n(r). For any rule r ∈ Π, we set up in F (Π) the facts

lit(h,l, r). atom(l,|l|). for each literal l ∈ H(r),
lit(p,l, r). for each literal l ∈ B+(r),
lit(n,l, r). for each literal l ∈ B−(r).

While the facts for predicate lit obviously encode the rules of Π, the facts for
predicate atom indicate whether a literal is classically positive or negative. We
only need this information for head literals; this will be further explained below.

Meta-Interpreter Πmeta We construct our meta-interpreter program Πmeta,
which in essence is a positive disjunctive program, in a sequence of several steps.
They center around checking whether a guess for an answer set S ⊆ Lit(Π),
encoded by a predicate inS(·), is an answer set of Π by testing the criteria of
Theorem 1. The steps of the transformation cast the conditions of the theorem
into rules of Πmeta, and provide auxiliary machinery for this aim.

Step 1 We add the following preprocessing rules:

1: rule(L,R) :- lit(h,L,R), not lit(p,L,R), not lit(n,L,R).

2: ruleBefore(L,R) :- rule(L,R), rule(L,R1), R1 < R.

3: ruleAfter(L,R) :- rule(L,R), rule(L,R1), R < R1.

4: ruleBetween(L,R1,R2) :- rule(L,R1), rule(L,R2), rule(L,R3),

R1 < R3, R3 < R2.

4

5: firstRule(L,R) :- rule(L,R), not ruleBefore(L,R).

6: lastRule(L,R) :- rule(L,R), not ruleAfter(L,R).

7: nextRule(L,R1,R2) :- rule(L,R1), rule(L,R2), R1 < R2,

not ruleBetween(L,R1,R2).

8: before(HPN,L,R) :- lit(HPN,L,R), lit(HPN,L1,R), L1 < L.

9: after(HPN,L,R) :- lit(HPN,L,R), lit(HPN,L1,R), L < L1.

10: between(HPN,L,L2,R) :- lit(HPN,L,R), lit(HPN,L1,R),

lit(HPN,L2,R), L<L1, L1<L2.

11: next(HPN,L,L1,R) :- lit(HPN,L,R), lit(HPN,L1,R), L < L1,

not between(HPN,L,L1,R).

12: first(HPN,L,R) :- lit(HPN,L,R), not before(HPN,L,R).

13: last(HPN,L,R) :- lit(HPN,L,R), not after(HPN,L,R).

14: hlit(L) :- rule(L,R).

Lines 1 to 7 fix an enumeration of the rules in Π from which a literal l may
be derived, assuming a given order < on rule names (e.g. in DLV, built-in lexi-
cographic order; < can also be easily generated using guessing rules). Note that
under answer set semantics, we need only to consider rules where the literal l to
prove does not occur in the body.
Next, lines 8 to 13 fix enumerations of H(r), B+(r) and B−(r) for each rule.
The final line 14 collects all literals that can be derived from rule heads. Note
that the rules on lines 1-14 plus F (Π) form a stratified program, which has a
single answer set (cf. [16, 17]).

Step 2 We add rules which “guess” a candidate answer set S ⊆ Lit(Π) and a
total ordering phi on S corresponding with the function φ in Theorem 1.(2).
15: inS(L) v ninS(L) :- hlit(L).

16: ninS(L) :- lit(pn,L,R), not hlit(L). } for each pn ∈ {p,n}
17: notok :- inS(L), inS(NL), L != NL, atom(L,A), atom(NL,A).

18: phi(L,L1) v phi(L1,L) :- inS(L), inS(L1), L < L1.

19: phi(L,L2) :- phi(L,L1),phi(L1,L2).

Line 15 focuses the guess of S to literals occurring in some relevant rule head
in Π; other literals can not belong to S (line 16). Line 17 then checks whether
S is consistent, deriving a new distinct atom notok otherwise. Line 18 guesses
a strict total order phi on inS where line 19 guarantees transitivity; note that
minimality of answer sets prevents that phi is cyclic, i.e., that phi(L,L) holds.

In the subsequent steps, we check whether S and phi violate the conditions
of Theorem 1 by deriving the distinct atom notok in case, indicating that S is
not an answer set or phi does not represent a proper function φ.

Step 3 Corresponding to condition 1 in Theorem 1, notok is derived whenever
there is an unsatisfied rule by the following program part:
20: allInSUpto(p,Min,R) :- inS(Min), first(p,Min,R).

21: allInSUpto(p,L1,R) :- inS(L1), allInSUpto(p,L,R), next(p,L,L1,R).

22: allInS(p,R) :- allInSUpto(p,Max,R),last(p,Max,R).

23: allNinSUpto(hn,Min,R) :- ninS(Min), first(hn,Min,R).
24: allNinSUpto(hn,L1,R) :- ninS(L1), allNinSUpto(hn,L,R),

next(hn,L,L1,R).
25: allNinS(hn,R) :- allNinSUpto(hn,Max,R), last(hn,Max,R).

for each
hn ∈ {h,n}

5

26: hasHead(R) :- lit(h,L,R).

27: hasPBody(R) :- lit(p,L,R).

28: hasNBody(R) :- lit(n,L,R).

29: allNinS(h,R) :- lit(HPN,L,R), not hasHead(R).

30: allInS(p,R) :- lit(HPN,L,R), not hasPBody(R).

31: allNinS(n,R) :- lit(HPN,L,R), not hasNBody(R).

32: notok :- allNinS(h,R), allInS(p,R), allNinS(n,R), lit(HPN,L,R).

These rules compute by iteration over B+(r) (resp. H(r), B−(r)) for each
rule r, whether for all positive body (resp. head and weakly negated body)
literals in rule r inS holds (resp. ninS holds) (lines 20 to 25). Here, empty heads
(resp. bodies) are interpreted as unsatisfied (resp. satisfied), cf. lines 26 to 31.
The final rule 32 fires exactly if one of the original rules from Π is unsatisfied.

Step 4 We derive notok whenever there is a literal l ∈ S which is not provable by
any rule r wrt. phi. This corresponds to checking condition 2 from Theorem 1.
33: failsToProve(L,R) :- rule(L,R), lit(p,L1,R), ninS(L1).

34: failsToProve(L,R) :- rule(L,R), lit(n,L1,R), inS(L1).

35: failsToProve(L,R) :- rule(L,R), rule(L1,R), inS(L1), L1 != L, inS(L).

36: failsToProve(L,R) :- rule(L,R), lit(p,L1,R), phi(L1,L).

37: allFailUpto(L,R) :- failsToProve(L,R), firstRule(L,R).

38: allFailUpto(L,R1) :- failsToProve(L,R1), allFailUpto(L,R),

nextRule(L,R,R1).

39: notok :- allFailUpto(L,R), lastRule(L,R), inS(L).

Lines 33 and 34 check whether condition 2.(a) or (b) are violated, i.e. some
rule can only prove a literal if its body is satisfied. Condition 2.(d) is checked
in line 35, i.e. r fails to prove l if there is some l′ 6= l such that l′ ∈ H(r) ∩ S.
Violations of condition 2.(e) are checked in line 36. Finally, lines 37 to 39 derive
notok if all rules fail to prove some literal l ∈ S by iterating over all rules with
l ∈ H(r) using the order from Step 1. Thus, condition 2.(c) is implicitly checked.

Step 5 Whenever notok is derived, indicating a wrong guess, then we apply a
saturation technique as in [6, 10] to some other predicates, such that a canonical
set Ω results. This set turns out to be an answer set iff no guess for S and φ
works out, i.e., Π has no answer set. In particular, we saturate the predicates
inS, ninS, and phi by the following rules:
40: phi(L,L1) :- notok, hlit(L), hlit(L1).

41: inS(L) :- notok, hlit(L).

42: ninS(L) :- notok, hlit(L).

Intuitively, by these rules, any answer set containing notok is “blown up” to
an answer set Ω containing all possible guesses for inS, ninS, and phi.

3.1 Answer Set Correspondence

Let tr(Π) = F (Π)∪Πmeta, where F (Π) and Πmeta are the input representation
and meta-interpreter as defined above. Clearly, tr(Π) satisfies property T3, and
as easily checked, tr(Π) is modular. Moreover, ¬ does not occur in tr(Π) and
not only stratified. The latter is not applied to literals depending on disjunction;
it thus occurs only in the deterministic part of tr(Π), i.e. T4 holds.

To establish T1 and T2, we define the literal set Ω as follows:

6

Definition 1. Let Πi
meta be the set of rules in Πmeta established in Step i ∈

{1, . . . , 5}. For any program Π, let ΠΩ = F (Π)∪
⋃

i∈{1,3,4,5} Πi
meta ∪ {notok.}.

Then, Ω is defined as the answer set of ΠΩ.

The fact that ΠΩ is a stratified normal logic program without ¬ and constraints,
which as well-known has a single answer set, yields the following lemma.

Lemma 1. Ω is well-defined and uniquely determined by Π.

Theorem 2. 2 For any given HDLP Π the following holds for tr(Π):
1. tr(Π) has some answer set, and S′ ⊆ Ω for any answer set S′ of tr(Π).
2. S is an answer set of Π ⇔ there exists an answer set S′ of tr(Π) such that

S = {l | inS(l) ∈ S′} and notok 6∈ S′.
3. Π has no answer set ⇔ tr(Π) has the unique answer set Ω.

The following proposition is not difficult to establish.

Proposition 1. Given Π, the transformation tr(Π), as well as the ground in-
stantiation of tr(Π), is computable in LOGSPACE (thus in polynomial time).

As noticed above, tr(Π) uses weak negation only stratified and in a deter-
ministic part of the program; we can easily eliminate it by computing in the
transformation the complement of each predicate accessed through not and pro-
viding it in F (Π) as facts; we then obtain a positive program. (The built-in
predicates < and ! = can be eliminated similarly if desired.) However, this mod-
ified transformation is not modular. As shown next, this is not incidentally.

Proposition 2. There is no modular transformation tr′(Π) from HDLPs to
DLPs satisfying T1, T2 and T3 such that tr′(Π) is a positive program.

Proof. Assuming such a tr′(Π) exists, we derive a contradiction. Let Π1 =
{ a :- not b.} and Π2 = Π1 ∪ {b.}. Then, tr′(Π2) has some answer set S2.
Since tr′(·) is modular, tr′(Π1) ⊆ tr′(Π2) holds and thus S2 satisfies each rule
in tr′(Π1). Hence, S2 contains some answer set S1. By T1, inS(a) ∈ S1 must
hold, and hence inS(a) ∈ S2. By T1 again, it follows that Π2 has an answer set
S such that a ∈ S. But the single answer set of Π2 is {b},a contradiction. ut

Prop. 2 remains true if T1 is generalized such that the answer set S of Π
corresponding to S′ is given by S = {l | S′ |= Φ(l)}, where Φ(x) is a monotone
query (e.g., computed by a normal positive program without constraints). More-
over, if a successor predicate next(X,Y) and predicates first(X) and last(X)
for the constants are available (on a finite universe, resp. the constants in Π and
rule names), then the negation of the non-input predicates accessed through not
can be computed by a positive normal program, since such programs capture
polynomial time computability by well-known results on the expressive power of
Datalog[14]; thus, negation of input predicates in F (Π) is sufficient in this case.

2 Due to space constraints, we refer to the upcoming extended version of this paper
and http://www.kr.tuwien.ac.at/staff/axel/guessncheck/ for proofs and encodings.

7

3.2 Optimizations
Πmeta can be modified in several respects. We discuss here some modifications
which, though not necessarily shrinking size of the ground instantiation, intu-
itively prune the search of an answer set solver applied to tr(Π).

Give up modularity If we sacrifice modularity (i.e. that tr(Π) =
⋃

r∈Π tr(r)),
and allow that Πmeta partly depends on the input, then we can circumvent the
iterations in Step 3 and part of Step 1 as follows: We substitute Step 3 by rules

notok :- ninS(h1), . . . , ninS(hl), inS(b1), . . . , inS(bm), ninS(bm+1), . . . ninS(bn). (2)

for each rule r in Π of form (1). These rules can be efficiently generated in
parallel to F (Π). Lines 8 to 13 of Step 1 then can also be dropped.

Forcing the guess of S For any normal rule r ∈ Π with |H(r)| = 1 which has a
satisfied body, we can force the guess of h: we replace (2) by

inS(h) :- inS(b1), . . . , inS(bm), ninS(bm+1), . . . ninS(bn). (3)

In this context, since constraints only serves to “discard” unwanted models but
cannot prove any literal, we can ignore them during input generation F (Π);
rule (2) is sufficient. Note that dropping input representation lit(n,l, c). for
literals only occurring in the negative body of constraints but nowhere else in Π
requires some care Such l can be removed by simple preprocessing, though.

Optimize guess of order We only need to guess and check the order φ for literals
L, L′ if they allow for cyclic dependency, i.e., they appear in the heads of rules
within the same strongly connected component of the program wrt. S.3 These
dependencies wrt. S are easily computed:

dep(L,L1) :- lit(h,L,R),lit(p,L1,R),inS(L),inS(L1).

dep(L,L2) :- lit(h,L,R),lit(p,L1,R),dep(L1,L2),inS(L).

cyclic :- dep(L,L1), dep(L1,L).

The guessing rules for φ (line 29 and 30) are then be replaced by:

phi(L,L1) v phi(L,L1) :- dep(L,L1), dep(L1,L), L < L1,cyclic.

phi(L,L2) :- phi(L,L1),phi(L1,L2), cyclic.

Moreover, we add the new atom cyclic also to the body of the rules where phi
appears (lines 36,40) to check phi only if Π has any cyclic dependencies wrt. S.

4 Integrating Guess and co-NP Check Programs

A general method for solving NP problems using answer set programming is
given by the so called “guess and check” paradigm: First a (possibly disjunctive)
program is used to guess a set of candidate solutions, and then rules and con-
straints are added which eliminate unwanted solutions. DLPs allow for the for-
mulation of such problems in a very intuitive way (e.g. solutions of 3-colorability,
3 Similarly, in [1] φ : Lit(Π) → {1, . . . , r} is only defined for a range r bound by the

longest acyclic path in any strongly connected component of the program.

8

deterministic planning, etc.) if checking is easy (often polynomial), such as check-
ing whether no adjacent nodes have the same color, a course of deterministic
actions reaches a certain goal, etc. For instance, given a graph as a set of facts of
the form node(x). and edge(x, y). we can write a simple DLP which guesses
and checks all possible 3-colorings as follows:

col(red,X) v col(green,X) v col(blue,X) :- node(X). } Guess
:- edge(X,Y), col(C,X), col(C,Y). } Check

However, encoding problems where the check is in co-NP but not known to be
polynomial (or in NP) is not always obvious (e.g., for conformant planning [4],
or minimal update answer sets [5]). A simple, commonly used workaround is to
write two programs:
(i) a normal LP or HDLP Πguess, which guesses some solution, and
(ii) a HDLP (equivalently, normal LP) Πcheck which encodes the co-NP check,
and proceed as follows: First compute, one by one, the candidate solutions
S1, S2, . . . as answer sets of Πguess and pipe each Si as input to Πcheck; out-
put Si if Πcheck ∪ Si has no answer set.

By the computational power of full disjunctive logic programs (ΣP
2 [6]), we

know that such problems can also be expressed by a single EDLP, Πsolve. In
the following, we show how our transformation tr resp. trOpt from above can be
used to automatically combine Πguess and Πcheck into a single program.

We assume that the set Lit(Πguess) is a Splitting Set [11] of Πguess∪Πcheck,
i.e. no head literal from Πcheck occurs in Πguess. This can be easily achieved by
introducing new predicate names, e.g., p′ for a predicate p, and adding a rule
p′(t):-p(t) in case. Each rule r in Πcheck is of the form

h1v · · · v hl :- bc1, . . . , bcm, not bcm+1, . . . , not bcn

bg1, . . . , bgp, not bgp+1, . . . , not bgq.
(4)

where the bgi are the body literals defined in Πguess. We write bodyguess(r) for
bg1, . . . , bgp, not bgp+1, . . . , not bgq. We now define a new check program.

Program Π′
check contains the following rules and constraints:

1. The facts F (Πcheck) in a conditional version: For each r∈Πcheck of form (4),
lit(h,l, r):- bodyguess(r). atom(l,|l|). for each l ∈ H(r);

lit(p,bci, r):- bodyguess(r). for each i ∈ {1, . . . , m};
lit(n,bcj , r):- bodyguess(r). for each j ∈ {m + 1, . . . , n}.

2. each rule in Πmeta (where for the optimized version, in rules (2) and (3)
bodyguess(r) is added to the bodies);

3. finally, a constraint :- not notok. This will eliminate all answer sets S such
that Πcheck ∪ S has an answer set.

The union of Πguess and Π ′
check then amounts to the desired integrated encoding

Πsolve, which is expressed by the following result.

Theorem 3. For Πguess and Πcheck, the answer sets S′ of Πsolve = Πguess ∪
Π ′

check correspond 1-1 with the answer sets S of Πguess such that Πcheck∪S has
no answer set.

9

5 Applications

We now exemplify the use of our transformation for two ΣP
2 -complete problems,

which thus involve co-NP-complete solution checking: one is about Quantified
Boolean formulas (QBFs) with one quantifier alternation, which are well-studied
in Answer Set Programming, and the other about conformant planning [4, 18].
Further examples of such problems can be found e.g. in [6, 5, 9] (and solved
similarly). However, note that our method is applicable to any checks encoded
by inconsistency of a HDLP; co-NP-hardness is not a prerequisite.

5.1 Quantified Boolean Formulas

Given a QBF F = ∃x1 · · · ∃xm∀y1 · · · ∀yn Φ, where Φ = c1 ∨ · · · ∨ ck is a propo-
sitional formula over x1, . . . , xm, y1, . . . , yn in disjunctive normal form, i.e. each
ci = ai,1∧· · ·∧ai,il

and |ai,j | ∈ {x1, . . . , xm, y1 . . . , yn}, compute the assignments
to the variable x1, . . . , xm which witness that F evaluates to true.

Intuitively, this problem can be solved by “guessing and checking” as follows:

(QBF g) Guess a truth assignment for the variables x1, . . . , xm.
(QBF c) Check whether this assignment satisfies Φ for all assignments of y1, . . . , yn.

Both parts can be encoded by very simple HDLPs:
QBF g : QBF c :

x1 v −x1. ... xm v −xm. y1 v −y1. ... yn v −yn.

:- a1,1, . . . , a1,1l. ... :- ak,1, . . . , ak,kl.

Obviously, for any answer set S of QBF g, representing an assignment to x1, . . . , xn,
the program QBF c ∪ S has no answer set thanks to the constraints, iff every
assignment for y1, . . . , yn satisfies formula Φ then. By the method sketched, we
can now automatically generate a single program QBFsolve integrating the guess
and check programs 2. Note that the customary (but tricky) saturation technique
to solve this problem (cf. [6, 9]) is fully transparent to the non-expert.

5.2 Conformant planning

Loosely speaking, planning is the problem to find a sequence of actions P = α1,
α2,. . . , αn, a plan, which take a system from an initial state s0 to a state sn

in which a goal (often, given by an atom g) holds, where a state s is described
by values of fluents, i.e., predicates which might change over time. Conformant
planning [8] is concerned with finding a plan P which works under all contingen-
cies that may arise from incomplete information about the initial state and/or
nondeterministic action effects, which is in ΣP

2 under certain restrictions, cf. [4,
18]. Hence, the problem can be solved with a guess and (co-NP) check strategy.

As an example, we consider a simplified version of the well-known “Bomb in
the Toilet” planning problem (cf. [4, 13]): We have been alarmed that a possibly
armed bomb is in a lavatory which has a toilet bowl. Possible actions are dunking
the bomb into the bowl and flushing the toilet. After just dunking, the bomb may
be disarmed or not; only flushing the toilet guarantees that it is really disarmed.

Using the following guess and check programs Bombg and Bombc , respec-
tively, we can compute a plan for having the bomb disarmed by two actions:

10

Bombg : Bombc :

% Timestamps: % Initial state:

time(0). time(1). armed(0) v -armed(0).

%Guess a plan: % Frame Axioms:

dunk(T) v -dunk(T) :- time(T). armed(T1) :- armed(T), not -armed(T1),

flush(T) v -flush(T) :- time(T). time(T), T1=T+1.

% Forbid concurrent actions: dunked(T1) :- dunked(T), T1=T+1.

:- flush(T), dunk(T). % Effect off dunking:

dunked(T1) :- dunk(T), T1=T+1.

armed(T1)v-armed(T1):- dunk(T),armed(T),

T1=T+1.
% Effect of flushing:

-armed(T1):-flush(T),dunked(T),T1=T+1.

% Check whether goal holds in stage 2:

:- not armed(2).

Bombg guesses all candidate plans P = α1, α2, using time points for action
execution, while Bombc checks whether any such plan P is conformant for
the goal g = not armed(2). Here, CWA on armed is used, i.e., absence of
armed(t) is viewed as -armed(t), which saves a negative frame axiom on -armed.
The final constraint eliminates a plan execution iff it reaches the goal; thus,
Bombc has no answer set iff the plan P is conformant. The answer set S =
{time(0), time(1), dunk(0), flush(1)} of Bombg corresponds to the (single)
conformant plan P= dunk, flush for goal not armed(2).

By our general method, Bombg and Bombc can be integrated automatically
into a single program Bombplan = Bombg ∪Bombc ′ 2. It has a single answer set,
corresponding to the single conformant plan P= dunk, flush as desired.

Note that our rewriting method is more generally applicable than the encod-
ing for conformant planning proposed by Leone et al. [10] who require that state
transitions are specified by a positive constraint-free LP. Our method can still
safely be used in presence of negation and constraints, provided action execution
always leads to a consistent successor state (cf. [4, 18] for a discussion).

6 Discussion and Conclusion

We presented a method for rewriting a head-cycle free (extended) disjunctive
logic program (HDLP) into a stratified constraint-free disjunctive logic program,
such that their answer sets correspond and a designated answer set of the lat-
ter indicates inconsistency of the former. Moreover, we showed how to use this
method for automatically integrating a guess and separate check program for
a co-NP property (expressed by inconsistency of an HDLP), into an equivalent
single (extended) disjunctive logic program. This reconciles pragmatic problem
solving with the genuine “guess and check” approach in Answer Set Program-
ming [9], in case a single program expressing the problem is difficult to write,
and relieves the programmer from using tricky saturation techniques. Our ap-
proach takes advantage of the full expressive power of disjunctive logic program-
ming: integrated encodings as the ones considered are infeasible in less expressive
frameworks such as propositional SAT solving or normal logic programming.

11

For example, [4] described separate interleaved guess and check programs
for conformant planning, which are implemented in the planning system DLVK.
The present paper solves integrating these programs into a single program, and
moreover provides a basis for incorporating harder problems, e.g. checking plan
conformance if deciding action executability is already NP-complete (cf. [18]).

References

1. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

2. J. Delgrande, T. Schaub, and H. Tompits. plp: A generic compiler for ordered
logic programs. Proc. 6th Int’l Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-01), pp. 411–415. Springer, 2001.

3. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred answer sets
by meta-interpretation in answer set programming. Theory & Practice of Logic
Progr., 3(4-5):463–498.

4. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming
approach to knowledge-state planning, II: The DLVK system. Artif. Intell., 144(1-
2):157-211, 2003.

5. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory & Practice of Logic Prog., 2(6):721–777, 2002.

6. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

8. R. Goldman and M. Boddy. Expressive planning and explicit knowledge. Proc.
3rd Int’l Conf. on AI Planning and Scheduling (AIPS-96), pp. 110–117, 1996.

9. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, C. Koch, C. Mateis, S. Perri,
and F. Scarcello. The DLV System for Knowledge Representation and Reasoning.
Tech. Rep. INFSYS RR-1843-02-14, Inst. f. Informationssysteme, TU Wien, 2002.

10. N. Leone, R. Rosati, F. Scarcello. Enhancing answer set planning. Proc. IJCAI-01
Workshop on Planning under Uncertainty & Incomplete Information, pp. 33–42,
2001.

11. V. Lifschitz and H. Turner. Splitting a logic program. Proc. 11th Int’l Conf. on
Logic Programming (ICLP’94), pp. 23–37, 1994.

12. V.W. Marek and J.B. Remmel. On the Expressibility of stable logic programming.
Proc. LPNMR 2001, pp. 107–120. Springer, 2001.

13. D. McDermott. A critique of pure reason. Comp. Intell., 3:151–237, 1987.
14. C. H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the

EATCS, 26:21–23, 1985.
15. A. Provetti and T.C. Son, editors. Proc. AAAI 2001 Spring Symposium on Answer

Set Programming: Towards Efficient and Scalable Knowledge Representation and
Reasoning, Stanford, CA, March 2001. AAAI Press.

16. T. Przymusinski. On the declarative and procedural semantics of logic programs.
Journal of Automated Reasoning, 5(2):167–205, 1989.

17. T. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9:401–424, 1991.

18. H. Turner. Polynomial-length planning spans the Polynomial Hierarchy. Proc. 8th
European Conf. on Artificial Intelligence (JELIA), pp. 111–124, 2002.

12

