
Logic-Based Languages to Model
and Program Intelligent Agents

Maurizio Martelli
�
, Viviana Mascardi

�
, and Leon Sterling

�
�

DISI, Università di Genova,
Via Dodecaneso 35, 16146, Genova, Italy.�

martelli,mascardi � @disi.unige.it�
Department of Computer Science and Software Engineering,

The University of Melbourne Victoria 3010, Australia.
leon@cs.mu.oz.au

Abstract Research on tools for modeling and specifying intelligent agents, na-
mely computer systems situated in some environment and capable of flexible
autonomous actions, is very lively. Due to the complexity of intelligent agents,
the way they are modeled, specified and verified should greatly benefit by the
adoption of formal methods. Logic-based languages can be a useful tool for engi-
neering the development of a multi-agent system (MAS). This paper discusses six
logic-based languages which have been used to model and specify agents, namely
ConGolog, AGENT-0, the IMPACT specification language, Dylog, Concurrent
METATEM and ���	�	
 . To show their main features and to practically exemplify
how they can be used, a common running example is provided. Besides this, a set
of desirable features that languages should exhibit to prove useful in engineering
a MAS have been identified. A comparison of the six languages with respect to
the support given to these features is provided, as well as final considerations on
the usefulness of logic-based languages for “agent oriented software engineer-
ing”.

1 Introduction

Research on formal methods for modeling and programming real-world applications
characterized by autonomous, distributed and heterogeneous components which sense
and react to changes occurring in their environment and are able of complex interaction
is a very active research area which spans across the fields of artificial intelligence and
software engineering. The metaphor underlying this research is that any component of
the application is an intelligent agent, namely, according to a classical definition [10],

“. . . a computer system, situated in some environment, that is capable of flexi-
ble autonomous actions in order to meet its design objectives.”

As pointed out in [2] the way intelligent agents are modeled, specified and verified
should greatly benefit by the adoption of formal methods. Logic is recognized to be a
powerful means for specifying agents, and when the logic is executable it becomes a
powerful tool to rapidly develop prototypes of the agents and to verify their properties.

This paper provides an overview of six logic-based languages which have proven
useful to specify and prototype intelligent agents: ConGolog (Section 3), AGENT-0
(Section 4), the IMPACT specification language (Section 5), Dylog (Section 6), Con-
current METATEM (Section 7) and �
����� (Section 8). The main strength of these lan-
guages lies in their suitability to easily and quickly specify agents and MASs and to
fast develop working prototypes (each language can be executed thanks to a working
interpreter). In our opinion, however, most of these languages are not very suitable to
implement final real applications; this paper will then concentrate on the features these
languages provide for modeling, specifying and prototyping, and will not deal with
them as implementation languages. For each language we take under consideration, we
provide a short description and we practically exemplify the way the language can be
used by means of the running example depicted in Section 2. In Section 9 we identify
a set of features that, in our opinion, languages for agent-oriented software engineering
should provide: explicit representation of time, ability to sense the environment, sup-
port given to communication, concurrency and nondeterminism, modularity and clear
semantics. We also draw a comparison of the languages along these dimensions . In
Section 10 we conclude our work with some considerations on advantages of the use of
executable logic-based languages for modeling and programming agents and with our
future directions of work. An extended version of this paper can be found in Chapter 3
of [11].

2 The running example

To show how to define an agent in the various agent languages we discuss in this paper,
we implement a simple seller agent working in a distributed marketplace in each lan-
guage. The seller agent may receive a contractProposal message from a buyer agent.
According to the amount of goods required and the price proposed by the buyer, the
seller may accept the proposal and send the goods, refuse it or try to negotiate a new
price by sending a contractProposal message back to the buyer.

For sake of synthesis, we only deal with the first situation: if the received message
is contractProposal(goods, amount, proposed-price) and there is enough goods in
the warehouse and the price is greater or equal than a max value, then the seller accepts
the proposal by sending an accept message to the buyer and concurrently ships the
required goods to the buyer1. In our example, the goods to be exchanged are oranges,
with minimum and maximum price 1 and 2 euros respectively. The initial amount of
oranges that the seller possesses is 1000.

3 ConGolog

ConGolog [8] is a concurrent programming language based on the situation calculus
(J. McCarthy [13]) which includes facilities for prioritizing the concurrent execution,
interrupting the execution when certain conditions become true, and dealing with ex-
ogenous actions. ConGolog includes the following constructs:

1 If it is not possible to define concurrent actions because the language does not support them,
answering and shipping goods will be executed sequentially.

� Primitive action.���
Wait for a condition.��� ��� � ��� Sequence.��� ��� � � � Nondeterministic choice between actions.���! � Nondeterministic choice of arguments.�#"
Nondeterministic iteration.$

proc % � �'&� � � � � end; . . . proc %)(�*&� (� � (end;
�,+

Procedures.

if
�

then
� � else

� � Synchronized conditional.
while

���
do
�

Synchronized loop.��� ��- � ��� Concurrent execution.��� �/.0. � � � Concurrency with different priorities.�21
Concurrent iteration.3 �54 �76
Interrupt.

� stands for a situation calculus action,
�

stands for a situation calculus formula and
�
,

possibly subscripted, ranges over ConGolog programs.

3.1 Example

The emphasized text is used for constructs of the language; the normal text is used for
comments. Lowercase symbols represent constants of the language and uppercase sym-
bols are variables. Predicate and function symbols are lowercase. These conventions
will be respected throughout all the paper, unless stated otherwise. We omit comments
when it is easy to understand the agent’s code.

– Primitive actions:
ship(Buyer, Product, Required-amount) send(Sender, Receiver, Message)

– Situation independent functions:
min-price(Product) = Min max-price(Product) = Max

– Primitive fluents:
receiving(Sender, Receiver, Message, S)
Receiver receives Message from Sender in situation S.
storing(Product, Amount, S)
The seller stores Amount of Product in situation S.

– Initial state:
min-price(orange) = 1 max-price(orange) = 28

S, R, M, 9 receiving(S, R, M, :�;) storing(orange, 1000, :*;)
– Precondition axioms:

poss(ship(Buyer, Product, Required-amount), S) <
storing(Product, Amount, S) = Amount > Required-amount

It is possible to ship a certain product if there is enough of this product stored
in the department-store.
poss(send(Sender, Receiver, Message), s) < true
It is always possible to send messages.

– Successor state axioms:

poss(A, S) ?A@
(receiving(Sender, Receiver, Message, do(A, S)) <

(A = send(Sender, Receiver, Message)B
(A C? send(Sender, Receiver, Message) = Message = empty-msg))

Receiver is receiving a non-empty Message from Sender if Sender sent Mes-
sage to Receiver in the previous situation. Otherwise, Receiver picks up an
empty message from its mailbox.
poss(A, S) ?A@

(storing(Product, Amount, do(A, S)) <
(A = ship(Buyer, Product, Required-amount) =
storing(Product, Required-amount + Amount, S))B

(A C? ship(Buyer, Product, Required-amount) =
storing(Product, Amount, S)))

The seller has a certain Amount of Product if it had Required-amount + Amount
of Product in the previous situation and it shipped Required-amount of Product,
or if it had Amount of Product in the previous situation and it did not ship any
Product.

The seller agent executes the procedure seller-life-cycle defined in the following way.

proc seller-life-cycle
while true do

if receiving(Buyer, seller, contractProposal(Product, Required-amount, Price), now)
then

if storing(Product, Amount, now) = Amount > Required-amount
= Price > max-price(Product)

then ship(Buyer, Product, Required-amount)- send(seller, Buyer, accept(Product, Required-amount, Price))
else

else nil

4 AGENT-0

The paper Agent-Oriented Programming by Y. Shoham [16] describes the agent-oriented
programming (AOP) paradigm, based on the belief and obligation (or commitment)
mental categories. A third category, which is not a mental construct, is capability. De-
cision (or choice) is treated as obligation to oneself. A simple point-based temporal
language is used to talk about time. As far as actions are concerned, they are not distin-
guished from facts: the occurrence of an action is represented by the corresponding fact
holding. Beliefs are represented by means of the modal operator D . The general form
of a belief statement is DFEG � meaning that agent � believes

�
at time H . Modal opera-

tors IJDFK , LNMFO , OJPRQ and PSDFKTM are used in a similar way to express obligations,
decisions, capabilities and abilities (the immediate version of capabilities) of the agent.

In the AGENT-0 programming language [16], the programmer specifies only con-
ditions for making commitments; commitments are actually made and later carried out,

automatically at the appropriate times. Commitments are only to primitive actions,
those that the agent can directly execute. Their syntax involves basic building blocks
as facts (atomic objective sentences), private actions ((DO t p-action)), communicative
actions ((INFORM t a fact), (REQUEST t a action), (UNREQUEST t a action)), nonac-
tions ((REFRAIN action)), mental conditions (logical combinations of mental patterns
of the form (B fact) or ((CMT a) action)), conditional action ((IF mntlcond action))
and, finally, message conditions (logical combinations of message patterns of the form
(From Type Content) where From is the sender’s name, Type is INFORM, REQUEST
or UNREQUEST and Content is a fact statement or an action statement). Finally, the
syntax of a commitment rule is: (COMMIT msgcond mntlcond (agent action)*), where
msgcond and mntlcond are respectively message and mental conditions, agent is an
agent name, action is an action statement and * denotes repetition of zero or more
times. A program is simply a sequence of commitment rules preceded by a definition of
the agent’s capabilities and initial beliefs, and the fixing of the time grain (this definition
will be omitted in our example).

4.1 Example

Variables are preceded by a “?” mark instead of being uppercase, coherently with the
language syntax. Universally-quantified variables are denoted by the prefix “?!”.

CAPABILITIES := ((DO ?time (ship ?!buyer ?prod ?required-amount ?!price))
(AND (B (?time (stored ?prod ?stored-amount)))

(
6 ? ?stored-amount ?required-amount))

The agent has the capability of shipping a certain amount of goods, provided that, at the
time of shipping, it believes that such amount is stored in the department-store.

INITIAL BELIEFS := (0 (stored orange 1000)) (?!time (min-price orange 1))
(?!time (max-price orange 2))

COMMITMENT RULES := (COMMIT
(?buyer REQUEST

(DO now+1 (ship ?buyer ?prod ?req-amnt ?price)))
(AND (B (now (stored ?prod ?stored-amnt))) (

6 ? ?stored-amnt ?req-amnt)
(B (?!time (max-price ?prod ?max))) (

6 ? ?price ?max))
(?buyer (DO now+1

(ship ?buyer ?prod ?req-amnt ?price)))
(myself (INFORM now+1 ?buyer (accepted ?prod ?req-amnt ?price)))
(myself (DO now+1 (update-product ?prod ?req-amnt))))

This commitment rule says that if the seller agent receives a request of shipping a cer-
tain amount of goods at a certain price at time now+1, and if it believes that at time now
the required amount is stored in the department-store and the proposed price is greater
than max-price, the seller agent commits itself to the buyer to ship the goods at time
now+1, and decides to inform the buyer that its request has been accepted and to update
the stored amount of goods.

5 The IMPACT agent language

IMPACT agents [5] are built “on top” of some existing body of code U specified by the
data types or data structures, V , that the agent manipulates and by a set of functions,W

, that are callable by external programs. If XZY W
is an [-ary function defined in

the U package, and \!] , . . . , \�^ are terms of appropriate types, then U`_aX � \b]�c � / c0\�^ �
is a code call. This code call says “Execute function X as defined in package U on the
stated list of arguments.” A code call atom is an expression ded#f of the form g*h � \ic	ded �
or h
j#\ig*h � \ic	ded � , where \ is a term and ded is a code call. A code call condition is a
conjunction of code call atoms and constraint atoms, which may involve deconstruc-
tion operations. The agent has a set of actions k ��l � c / / c l (� , where

l � c / � c l (are
variables for parameters that can change its state. Every action k has a precondition, a
set of effects and a delete list that describe how the agent state changes when the action
is executed, and an execution script or method consisting of a body of physical code
that implements the action. It also has a finite set mTO of integrity constraints that the
state n of the agent must satisfy, of the form op@ q G where o is a code call condi-
tion, and q G is a code call atom or constraint atom. Finally, each agent has a set of rules
called the agent program specifying the principles under which the agent is operating.
These rules specify, using deontic modalities, what the agent may do (r�k �ts �), must do
(uNk ��s �), may not do (vwk ��s �), does (xzy{k �ts �) and is no more obliged to do (|}k �ts �).~ yA��k �ts � is called action status atom, where Mod may be O, P, F, W, Do. If P is an
action status atom, then P and 9�P are called action status literals. An agent program�

is a finite set of rules of the form: P��pq���K � �`���/����K (where P is an action
status atom, q is a code call condition, and K � c � / c�K (are action status literals.

5.1 Example

We may suppose that the IMPACT program for the seller agent accesses an oracle
database where information on the stored amount of a certain product and its minimum
and maximum price is maintained in a stored product relation; a msgbox package that
allows agents to exchange messages, as described in Section 3 of [5]; and a mathemat-
ical package math providing mathematical functions.

– Initial state:
The stored product relation initially contains the tuple 3 orange, 1000, 1, 2

6
– Actions:

ship(Buyer, Product, Req amount)

Pre(ship(Buyer, Product, Req amount)) =
in(Old amount, oracle:select(stored product.amount, name, =, Product)) =
in(Difference, math:subtract(Old amount, Req amount)) =
Difference > 0

Add(ship(Buyer, Product, Req amount)) =
in(Difference, oracle:select(stored product.amount, name, =, Product))

Del(ship(Buyer, Product, Req amount)) =
in(Old amount, oracle:select(stored product.amount, name, =, Product))

In order for the agent to ship the product, there must be enough of it avail-
able (precondition of the action). The effect of shipping is that the amount of
available product is updated. We do not provide here the code which realizes
this action; we may think that this code issues an order to physically ship the
product.

sendMessage(Sender, Receiver, Message)
This action accesses the msgbox package putting a tuple in the agent message
box. Since the msgbox package is discussed in [5], we do not provide further
details here.

– Integrity constraints:
in(Min, oracle:select(stored product.min, name, =, Product)) =
in(Max, oracle:select(stored product.max, name, =, Product)) ?A@

0
3

Min
3

Max
in(Amount, oracle:select(stored product.amount, name, =, Product)) ?A@

Amount
6

0
– Agent Program:

Do sendMessage(Seller, Buyer, accept(Product, Req amount, Price)) �
in(� i, Buyer, Seller, contractProposal(Product, Req amount, Price), T . 2,

msgbox:getMessage(Sender)),
in(Max, oracle:select(stored product.max, name, =, Product)),
in(Amount, oracle:select(stored product.amount, name, =, Product)),
Price

6 ? Max, Amount
6 ? Req amount

This rule says that if all the conditions for accepting a proposal are met then the
seller sends a message to the buyer, saying that it accepts the proposal.

O ship(Buyer, Product, Req amount) �
Do sendMessage(Seller, Buyer, accept(Product, Req amount, Price))

This rule says that if the seller agent accepts the buyer’s proposal by sending a
message to it, then it is obliged to ship the product.

6 Dylog

The Ph.D. Thesis [14] summarizes the results obtained in the definition of an action
language for intelligent agents and describes Dylog, a Prolog implementation of this
action language. In the action language each primitive action � Y�P is represented by a
modality � ��� . The meaning of the formula � �#� k is that k holds after any execution of � .
The meaning of the formula � � . k is that there is a possible execution of action � after
which k holds. There is also a modality � which is used to denote those formulae hold-
ing in all states. A state consists in a set of fluents representing the agent’s knowledge

2 The first element of the tuple says that the message is an input message (“i”); the last element
is the reception time.

in that state. The simple action laws are rules that allow to describe direct action laws,
precondition laws and causal laws.

Action laws define direct effect of primitive actions on a fluent and allow actions
with conditional effects to be represented. In Dylog they have the form a causes F if Fs
where a is a primitive action name, F is a fluent, and Fs is a fluent conjunction, meaning
that action a has effect on F, when executed in a state where the fluent precondition Fs
holds.

Precondition laws allow action preconditions, i.e. those conditions which make an
action executable in a state, to be specified. Precondition laws have form a possible if
Fs meaning that when a fluent conjunction Fs holds in a state, execution of the action a
is possible in that state.

Causal laws are used to express causal dependencies among fluents and, then, to
describe indirect effects of primitive actions. They have the form F if Fs meaning that
the fluent F holds if the fluent conjunction Fs holds too.

Procedures define the behavior of complex actions which are defined on the basis
of other complex actions, primitive actions and test actions of the form ?Fs. In Dylog
a procedure is defined as a collection of procedure clauses of the form � ; is � � , . . . , �b(� [�>�� � where � ; is the name of the procedure and �i� , �T?�� / / [is either a primitive
action, or a test action, a procedure name, or a Prolog goal. Procedures can be recursive
and they are executed in a goal directed way, similarly to standard logic programs.

Dylog also provides constructs for planning and sensing that we do not discuss here.

6.1 Example

In the following example, the predicate is has its usual meaning in Prolog programs.
The Dylog’s symbol is for defining procedures is substituted with isp.

– Functional fluents:
functionalFluent(storing/2). functionalFluent(new message/2).
The “/n” after the fluent’s name indicates its arity.

– Unchangeable knowledge base (Prolog facts):
min-price(orange, 1). max-price(orange, 2).

– Initial observations:
obs(storing(orange, 1000)).

– Primitive actions:
receive.
This action senses if a fluent new message(Sender, Message) is present in the
caller’s mailbox. We do not provide further details on its definition, as well as
on the send action. The interested reader can find it in the Appendix of [14].
send(Sender, Receiver, Message)
ship(Buyer, Product, Req Amnt, Price)
This action ships the required product to the Buyer agent. It is characterized by
the following action laws and precondition laws:

Action laws:
ship(Buyer, Product, Req Amnt, Price)

causes storing(Product, Amount)
if ?storing(Product, Old Amount) &

(Amount is Old Amount - Req Amnt).

Precondition laws:
ship(Buyer, Product, Req Amnt)

possible if ?storing(Product, Old Amount) &
(Old Amount

6 ? Req Amnt).
ship(Buyer, Product, Req Amnt)

possible if max-price(Product, Max) & (Price
6 ? Max).

– Procedures:
seller agent cycle isp

receive &
manage message &
seller agent cycle.

The main cycle for the seller agent consists in waiting for a message, managing
it and starting waiting for a message again.
manage message isp

?new message(Buyer, contractProposal(Product, Req Amnt, Price)) &
?storing(Product, Old Amount) &
(Old Amount

6 ? Req Amnt) &
max-price(Product, Max) & (Price

6 ? Max) &
ship(Buyer, Product, Req Amnt, Price) &
send(seller, Buyer, accept(Product, Req Amnt, Price))

7 Concurrent METATEM

Concurrent METATEM [6] is a programming language for distributed artificial intel-
ligence based on a linear discrete model of time modeled as an infinite sequence of
discrete states which start at the “beginning of time”. A Concurrent METATEM system
contains a number of concurrently executing agents which are able to communicate
through message passing. Each agent executes a first-order temporal logic specification
of its desired behavior. Each agent has two main components:

– an interface which defines how the agent may interact with its environment (i.e.,
other agents) by specifying which messages the agent can accept and send;

– a computational engine, which defines how the agent may act.

The computational engine of an object is based on the Concurrent METATEM
paradigm of executable temporal logics which includes the following operators:

o���� o will be true until � will become true primitive connective
o�U�� o was true until � became true primitive connective� � � is true in the next state [false ���]� � there was a last state, and � was true in the last state [false U��]� � if there was a last state, then � was true in that state [9 � 9¡�]¢ � � will be true in some future state [true ���]¢ � � was true in some past state [true U��]
�J� � will be true in all future states [9 ¢ 9¡�]£ � � was true in all past states [9 ¢ 9¡�]

The idea behind this approach is to directly execute a declarative agent specification
given as a set of program rules which are temporal logic formulae of the form “an-
tecedent about past @ consequent about future”.

7.1 Example

– The interface of the seller agent is the following:
seller(contractProposal)[accept, refuse, contractProposal, ship]
meaning that the seller agent, identified by the seller identifier, is able to recog-
nize a contractProposal message and is able to broadcast the messages accept,
refuse, contractProposal, ship (messages include both communicative acts and
actions which modify the environment).

– The internal knowledge base of the seller agent contains the following rigid predi-
cates (predicates whose value never changes):

min-price(orange, 1). max-price(orange, 2).
– The internal knowledge base of the seller agent contains the following flexible pred-

icates (predicates whose value changes over time):
storing(orange, 1000).

– The program rules of the seller agent are the following ones:8
Buyer.

8
Product.

8
Req Amnt.

8
Price.�

[contractProposal(Buyer, seller, Product, Req Amnt, Price) =
storing(Product, Old Amount) =
Old Amount

6 ? Req Amnt =
max-price(Product, Max) = Price

6 ? Max] ?�@
[ship(Buyer, Product, Req Amnt, Price) =
accept(seller, Buyer, Product, Req Amnt, Price)]

If there exists a previous state where a Buyer sent a contractProposal message
to seller, and in that previous state all the conditions were met to accept the
Buyer’s proposal and ship the required product, then in the current state these
actions (shipping and accepting) are performed.

8 Ehhf

The language � ����� [4] is an executable specification language for modeling concurrent
and resource sensitive systems. � ���*� is a multiset-based logic combining features of
extensions of logic programming languages like ¤ Prolog, e.g. goals with implication
and universal quantification, with the notion of formulae as resources at the basis of
linear logic [9]. A ������� -program % is a collection of multi-conclusion clauses of the
form P �¦¥¥ ¥¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ / � ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ PS(z§©¨Zª�« �e¬ , where the PS� are atomic formulae, and the linear
disjunction P �J¥¥ ¥¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ � / ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ PR(corresponds to the head of the clause and ª�« �­¬ is its body.
Furthermore, P�§©¨ND is a linear implication. Clauses of this kind consume the resources
(formulae) they need in order to be applied in a resolution step.

� ����� provides a way to “guard” the application of a given clause. In the extended
type of clauses ª � � � / �®ª�¯°@ � P � ¥¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ / � ¥¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ P (§©¨�ª�« �e¬ � , the goal-formulae ª �
are conditions that must be solved in order for the clause to be triggered.

8.1 Example

– Seller’s initial facts:

min-price(orange, 1). max-price(orange, 2).
storing(orange, 1000). seller-mail-box([]).
We assume that every agent has a mail-box which all the agents in the sys-
tem can update by calling a send predicate. The mailbox of the seller agent is
initially empty ([]). The reader interested in the definition of communication
primitives in � ���*� can find more details in Chapter 5 of [1].

– Seller’s life cycle:8
Message.

8
OtherMessages.

seller-mail-box([Message �OtherMessages]) ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
seller-cycle –§

manage(Message) ¥¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
seller-mail-box(OtherMessages) ¥¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
seller-cycle.

To satisfy the seller-cycle goal, the seller agent must have at least one mes-
sage in its mail-box. In this case, it consumes the seller-mail-box([Message �
OtherMessages]) and seller-cycle goals and produces the new goals of manag-
ing the received message (manage(Message)), removing it from the mail-box
(seller-mail-box(OtherMessages), where the list of messages does not contain
Message any more) and cycling (seller-cycle).

– Seller’s rules for managing messages:8
Buyer.

8
Product.

8
Req Amnt.

8
Price.

Old Amount
6 ? Req Amnt �

difference(Old Amount, Req Amnt, Remaining Amnt) �
max-price(Product, Max) � Price

6 ? Max ?A@
manage(contractProposal(Buyer, Product, Req Amnt, Price)) ¥¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
storing(Product, Old Amount) –§

storing(Product, Remaining Amount) ¥¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
ship(Buyer, Product, Req Amnt, Price) ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
send(Buyer, accept(seller, Product, Req Amnt, Price).

The goals before the ?A@ connective are not consumed by the execution of the
rule: they are used to evaluate values (difference(Old Amount, Req Amnt, Re-
maining Amnt), defined in some way), to compare values (Old Amount

6 ?
Req Amnt and Price

6 ? Max) and to get the value of variables appearing
in facts that are not changed by the rule (max-price(Product, Max)). In this
case, they succeed if the conditions for shipping the product are met. The
goals manage(contractProposal(Buyer, Product, Req Amnt, Price)) and stor-
ing(Product, Old Amount) are consumed; they are rewritten in storing(Product,
Remaining Amount), ship(Buyer, Product, Req Amnt, Price) and send(Buyer,
accept(seller, Product, Req Amnt, Price). The ship predicate will be defined by
some rules that we do not describe here.

9 Desirable features of an “optimal” agent specification language

In this section we compare the agent specification languages introduced so far along
different dimensions. The features we think to be mainly relevant for a language for
specifying agents and MASs either are related to the basic definition of an agent that
we already quoted in the introduction [10] (the first five ones) or are general features
that any specification and programming language should have, but that become really
indispensable for agent languages. Time: agents must either react in a timely fashion
to actions taking place in their environment and plan actions in a far future, thus they
should be aware of time. Sensing: one of the characterizing features of an agent is its
ability to sense and perceive the surrounding environment. Communication: an agent
must be social, namely, it must be able to communicate either with other agents and
with human beings. Concurrency: agents in a MAS execute autonomously and concur-
rently and thus it is important that an agent language provides constructs for concur-
rency among agents (external concurrency) and concurrency within threads internal to
the agent (internal concurrency). Nondeterminism: the evolution of a MAS consists of
a nondeterministic succession of events. Modularity: agent programs are typically very
complex and a developer would benefit from structuring them by defining modules,
macros and procedures. Semantics: due to the complexity of languages for agent, pro-
viding a clear semantics is the only means to fully understanding the meaning of the
constructs they provide and thus exploiting the potentialities of the language.

Since this paper discusses six languages from the perspective of modeling agents
and MASs and quickly developing a prototype rather than implementing a working ap-
plication, we avoid discussing all those technical details which are not fundamental for
implementing a prototype, such as efficiency, support to mobility, physical distribution
of the agents, integration of external software and traditional programming languages
and so on. Even if this paper does not aim at proposing a systematic and general ap-
proach to compare agent specification languages, we think that the features we take
under consideration can represent a good starting point for evaluating many specifica-
tion language for MASs.

In the next paragraphs we will analyze the relevant features in detail and in Table 1
we will summarize the results of our comparison. The reader can use this table to dis-
cover which language best supports the features she thinks to be mainly relevant for her
application. Features which turns to be useful for modeling an application in a certain
domain can be unsuitable for modeling another application in a different domain; for
this reason we think that any sort of rating of the analyzed features can be provided only
on a application-dependent basis and we do not deal with this issue in this paper.

Time. In ConGolog time instants are in direct correspondence with situations: : ; is
the agent’s situation at time � , ±­« � � � � c ² ³ c � (� c': ; � is the agent’s situation at time [.
However, time is not dealt with explicitly and no operators are provided for managing
it. In AGENT-0 time is included in all the constructs of the language. The operations
allowed on time variables are only mathematical operations (sums and differences).
When programming an agent, it is possible to establish the timegrain of its execution.
Time is a central issue in Concurrent METATEM specifications: there are a lot of time-
based operators (since, until, in the next state, in the last state, sometimes in the past,

sometimes in the future, always in the past, always in the future) which allow to define
complex timed expressions. As far as the other languages are concerned, time does not
appear in expressions of the language either explicitly or implicitly.

Sensing. Even if Dylog is the only language which provides an explicit construct for
defining actions which sense the value of a fluent, all the languages allow to perceive
values of atoms that are present in their knowledge base. Whether this knowledge base
correctly maintains a model of the environment or not, and thus whether it is possible
to “sense” the surrounding environment or not, depends on the given specification. It is
worthwhile to note that, in a certain sense, the IMPACT agent programming language is
the only one which really senses its (software) environment by means of the code calls
mechanism: this mechanism allows an agent to get information by really accessing
external software packages, instead of simulating them.

Communication. The languages that embed a support to communication are AGENT-0
and Concurrent METATEM. Among AGENT-0 language constructs, there are the IN-
FORM, REQUEST and UNREQUEST communicative actions which constitute a set of
performatives upon which any kind of communication can be built. Unfortunately, for
agent P to request an action to agent D it is necessary to know the exact syntax of the
action to require. The receiver agent has no means for understanding the content of a re-
quest and performing an action consequently, if the action to be performed is not exactly
specified as the content of the message itself. This is clearly a strong limitation, which
more recent agent communication languages, such as KQML [12] and FIPA ACL [7]
have overcome. The same limitation affects Concurrent METATEM: every agent has a
communicative interface the other agents in the system must know in order to exchange
information. Moreover, Concurrent METATEM does not provide a set of speech acts
that all the agents recognize: an AGENT-0 agent may not understand the content of
a REQUEST, but it at least knows the REQUEST performative; this is not true for a
Concurrent METATEM agent. The IMPACT language does not provide communication
primitives as part of the language, but among the software packages an agent may ac-
cess there is a msgbox package providing message box functionalities. Messages can
have any form, adhering to some existing standard or being defined ad-hoc for the ap-
plication. As far as the other languages are concerned, the specification developer has
to define her own communication primitives; however, for all the languages we took
under consideration we could easily find examples describing this task.

Concurrency. ConGolog provides different constructs for concurrent execution of pro-
cesses; these processes may be either internal to a single agent or may represent dif-
ferent agents executing concurrently. Thus, ConGolog supports both concurrency of
actions inside an agent and concurrency of agents. The same holds for �b����� , where
it is possible to concurrently execute either goals internal to a single agent or goals
for activating different agents. As an example of the last case, if different agents were
characterized by an agent-cycle like the one depicted for the seller agent, it would be
possible to prove a goal like agent1-cycle - agent2-cycle - ... - agentN-cycle meaning
that agent1 to agentN are executed concurrently. As far as IMPACT is concerned, it
associates a body of code implementing a notion of concurrency to each agent in the

system, to specify how concurrent actions internal to the agent must be executed. Con-
currency of agents is not explicitly specified: the IMPACT language allows the defini-
tion of individual agents, not of agent societies. The converse situation takes place with
Concurrent METATEM, where concurrency of internal actions is not supported; a Con-
current METATEM specification defines a set of concurrently executing agents which
are not able to execute internal concurrent actions. Finally, both Dylog and AGENT-0
do not support any kind of concurrency.

Nondeterminism. ConGolog allows for nondeterministic choice between actions, non-
deterministic choice of arguments and nondeterministic iteration. Nondeterminism in
the IMPACT language derives from the fact that the feasible, rational and reasonable
status sets giving the semantics to agent programs (see the Semantics paragraph be-
low) are not unique, thus introducing nondeterminism in the agent’s behavior. In Dylog
and ������� nondeterminism is introduced, as in usual logic programming settings, by the
presence of more procedures (rules, in �!���*�) defining the same predicate. The main
source of nondeterminism in Concurrent METATEM is due to nondeterministic tem-
poral operators such as “sometimes in the past”, “sometimes in the future”, which do
not identify a specific point in time, but may be verified in a range of instants. Finally,
AGENT-0 does not seem to support any kind of nondeterministic behavior.

Modularity. All the languages described in this paper support modularity at the agent
level, since they allow to define each agent program separately from the definition of
the other agents. Both ConGolog and Dylog support the definition of procedures. In
ConGolog these procedures are defined by macro expansion into formulae of the situ-
ation calculus, while in Dylog they are defined as axioms in the dynamic modal logic.
AGENT-0 does not support the definition of procedures, even if in Section 6.3 of [16]
macros are used for readability sake. The macro expansion mechanism is not supported
by the AGENT-0 implementation. � ���*� supports the definition of procedures as logic
programming languages do, by defining rules for solving a goal. Finally, IMPACT and
Concurrent METATEM do not allow the definition of procedures.

Semantics. All the languages discussed in this survey, except from AGENT-0, have a
formal semantics. Semantics of ConGolog is given as a transition semantics by means
of the predicates ´J�µ[�e¬ ��� c�: � and ¶{· � [�: ��� c':�c �¹¸ c': ¸ � . The possible configurations that
can be reached by a program

�
in situation : are those which are obtained by repeatedly

following the transition relation starting from
��� c�: � and which are final. There are three

different semantics which can be associated to an IMPACT agent program, given its
current state and integrity constraints: the feasible, rational and reasonable status set
semantics. Reasonable status set semantics is more refined that the rational one, which
is more refined that the feasible one. All of them are defined as a set of action status
atoms of the form xºySk ��s � that are true with respect to the agent program

�
, the current

state n and the set m»O of underlying integrity constraints. The logical characterization
of Dylog is provided in two steps. First, a multimodal logic interpretation of a dynamic
domain description which describes the monotonic part of the language is introduced.
Then, an abductive semantics to account for non-monotonic behavior of the language is
provided. As far as Concurrent METATEM is concerned, it has a Kripke-style semantics

given by the � ? relation that assigns the truth value of a formula in a model ¼ at a
particular moment in time � and with respect to a variable assignment. Finally, the � ���*�
operational semantics is given by means of a set of rules describing the way sequents
can be rewritten. According to the proof as computation interpretation of linear logic,
sequents represent the state of a computation.

Time
(T)

Sensing
(Sns)

Commun.
(Cm)

Concurr.
(Cc)

Nondet.
(N)

Modul.
(M)

Semantics
(Sm)

ConGolog ½ ½ ½ ¾ ¾ ¾ ¾
AGENT-0 ¾ ½ ¾ ½ ½ ½ ½
IMPACT ½ ¾ ½ ¾ ¾ ½ ¾
Dylog ½ ½ ½ ½ ¾ ¾ ¾
Conc. METATEM ¾ ½ ¾ ¾ ¾ ½ ¾
���	�	
 ½ ½ ½ ¾ ¾ ¾ ¾

T: Time is dealt with explicitly (¾), implicitly (½) or not taken into account (½).
Sns: The language provides constructs for really sensing its software environment (¾), for

simulating sensing actions (½) or no explicit constructs are provided (½).
Cm: The language provides communication primitives embedded in the language (¾), it

provides a package for communication (½), or it does not provide communication
primitives but examples of their definition can be easily found (½).

Cc: The language allows to model either internal or external concurrency or both (¾) or
no kind of concurrency is supported (½).

N: Some kind of nondeterminism is supported (¾) or is not supported (½) by the language.
M: The language supports (¾) or does not support (½) modularity.

Sm: The language has a formal semantics (¾) or as not one (½).

Table 1. Summary of the comparison.

10 Conclusions and future work

Logical languages are suitable to model agents because they allow to easily and intu-
itively represent mental notions without requiring any special training, allowing to spec-
ify agents that have beliefs, plans, goals and that are able to reason about them. The re-
cent organization of workshops fully dedicated to computational logic and multi-agent
systems (the CLIMA workshops, http://mhjcc3-ei.eng.hokudai.ac.jp/
clima.html, http://research.nii.ac.jp/˜ksatoh/clima01.html,
http://centria.di.fct.unl.pt/˜jleite/clima02/), and some recent
papers such as [15] confirm this observation. When logic-based languages are exe-
cutable like the ones described in this paper, they become a powerful tool for rapid
prototyping.

We are firmly convinced that researchers working in the AOSE field can greatly ben-
efit from languages like the ones we described in this paper; they could have even more
advantages if all the desired features would be present in the same language or, in al-
ternative, if a subset of these languages could be integrated in a unique common frame-

work, allowing agents defined in different languages to co-exist and interact within the
same MAS.

The ARPEGGIO open framework [3], which involves the authors of this paper to-
gether with researchers from the University of Maryland, was born with this second
aim in mind. The future direction of our work is to implement the ideas behind the
ARPEGGIO framework by identifying a suitable subset of languages, among the ones
described here, to be integrated within the same environment, and concretely realize
this integration.

References

1. A. Aretti. Semantica di sistemi multi-agente in logica lineare. Master’s thesis, DISI – Uni-
versità di Genova, Genova, Italy, 1999. In Italian.

2. P. Ciancarini and M. Wooldridge. Agent-oriented software engineering: The state of the art.
In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering - First
International Workshop, AOSE 2000, pages 1–28, Limerick, Ireland, 2000. Springer-Verlag.
LNCS 1957.

3. P. Dart, E. Kazmierckaz, M. Martelli, V. Mascardi, L. Sterling, V.S. Subrahmanian, and
F. Zini. Combining logical agents with rapid prototyping for engineering distributed ap-
plications. In Proc. 9th International Conference of Software Technology and Engineering
(STEP’99), Pittsburgh, PA, USA, 1999. IEEE Computer Society Press.

4. G. Delzanno and M. Martelli. Proofs as computations in linear logic. Theoretical Computer
Science, 258(1–2):269–297, 2001.

5. T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous active agents, I: Semantics. Artifi-
cial Intelligence, 108(1-2):179–255, 1999.

6. M. Fisher and H. Barringer. Concurrent METATEM processes – A language for distributed
AI. In Proceedings of the European Simulation Multiconference, Copenhagen, Denmark,
1991. SCS Press.

7. Foundation for Intelligent Physical Agents. FIPA ACL message structure specification. Ap-
proved for experimental, 14-06-2000, 2000.

8. G. De Giacomo, Y. Lespérance, and H. J. Levesque. Congolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence, 121:109–169, 2000.

9. J. Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
10. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-

ment. Autonomous Agents and Multi-Agent Systems, 1:7–38, 1998.
11. V. Mascardi. Logic-Based Specification Environments for Multi-Agent Systems. PhD thesis,

Dipartimento di Informatica e Scienze dell’Informazione, Università degli Studi di Genova,
Italy, 2002. DISI-TH-2002-04.

12. J. Mayfield, Y. Labrou, and T. Finin. Evaluation of KQML as an agent communication
language. In Intelligent Agents II. Springer Verlag, 1995. LNAI 1037.

13. J. McCarthy. Situations, actions and causal laws. Technical report, Stanford University, 1963.
Reprinted in Semantic Information Processing, M. Minsky ed., MIT Press, Cambridge, MA,
1968, pp 110-117.

14. V. Patti. Programming Rational Agents: a Modal Approach in a Logic Programming Setting.
PhD thesis, Dipartimento di Informatica, Università degli Studi di Torino, Italy, 2002.

15. F. Sadri and F. Toni. Computational logic and multi-agent systems: a roadmap. Technical
report, Department of Computing, Imperial College, London, 1999.

16. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.

