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Abstract. The approach to algebraic specifications of set theories pro-
posed by Tarski and Givant inspires current research aimed at taking
advantage of the purely equational nature of the resulting formulations
for enhanced automation of reasoning on aggregates of various kinds:
sets, bags, hypersets, etc. The viability of the said approach rests upon
the possibility to form ordered pairs and to decompose them by means
of conjugated projections. Ordered pairs can be conceived of in many
ways: along with the most classical one, several other pairing functions
are examined, which can be preferred to it when either the axiomatic
assumptions are too weak to enable pairing formation a la Kuratowski,
or they are strong enough to make the specification of conjugated pro-
jections particularly simple, and their formal properties easy to check
within the calculus of dyadic relations.

We also show that a kernel set theory, whose only postulates are the
extensionality axiom and single-element adjunction and removal axioms,
cannot be expressed in 3 variables (and hence it is not amenable to an
algebraic rendering achievable through conjugated projections).

Key words: Weak set theory, Calculus of dyadic relations, Pairing ax-
iom, Aggregates, n-variable expressibility, Pebble games.

Introduction

We will consider some weak theories of sets which result from adopting as axioms
some of the sentences in Fig. 1. These sentences are provable within important
classical theories of sets, such as full Zermelo-Fraenkel, or within Tarski’s theory
[21] of finite sets (equipollent to Peano arithmetic, cf. [24]). Actually, extensional-
ity (stated as (E) in modern terms), and the pairing aziom (conjunction of (IN)
with (P)) appeared already among Zermelo’s original set postulates in 1908 (see
[26]; today, however, (P) is usually deduced from the replacement axiom scheme
as shown in [18]). These theories hence retain, in the small, valuable traits. On
the other hand, by leaving some of the sentences in Fig. 1 out of our selection
of axioms, we can frame our investigation inside less classical but nevertheless
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Egtensionality | (E) VaVy(Vv(vez < vey) — z=y)
Null-set existence | (N) JzVv-v €z
Pair | (P) VaVy3dpVYv(vep « (v=2 Vv=y))
Add an element | (W) VaVy3dwVv(vew + (vex V v=y))
Remove an element | (L) VaVy3lVo(vel < (veEx A~v=y))
Regularity | (R) Vz3r(rezVr=z)A-Jv(ver AveEr))
Aciclicity (n =0,1,2,...) | (A") =3z ---Jzn(xo ET1- Tn-1 € T A T € To)

Fig. 1. Toolkit for assembling weak theories of aggregates

useful variants of set theory: recall that bags (also called multi-sets, cf. e.g. [7])
do not meet extensionality, (E), and hypersets (cf. [1, 2]) meet neither regularity,
(R), nor the weaker acyclicity assumption (A™).

Tarski and Givant’s approach to algebraic formalization of set theories moti-
vates current research in automation of reasoning. The main aim of this research
consists in benefiting from the purely equational nature of the resulting speci-
fications to develop enhanced automation of reasoning on aggregates of various
kinds: sets, bags, hypersets, etc. Promising results have been obtained in previ-
ous works (cf. [12, 13], for instance) which revealed the possibility of exploiting a
first-order theorem-prover to experiment with equational rendering of aggregate
theories. (As a further contribution to this research, we report on a number of
experiments developed with the theorem-prover Otter, cf. Sec.2.)

The viability of this approach relies upon the possibility to form ordered pairs
and to decompose them by means of conjugated projections. Since alternative
selections of the axioms correspond to different expressive power of the resulting
aggregate theory, our ultimate goal consists in identifying those fundamental
traits that allow a theory to support a suitable notion of ordered-pair constructor.
In doing this we will seek pairing notions which are easily amenable to a 3-
variable formulation under different (and inequivalent) possible selections of the
axioms. The main reason for undertaking this quest, is that any such pairing
notion can be used (cf. [23] and [24]) as the keystone of an equational variable-
free rendering of the theory under focus, or of any axiomatic extension of it.

We will proceed from two opposite points of view towards the borderline of
3-variable (in-)expressibility. As far as the inexpressibility issue is concerned, we
provide evidence that some of the possible selections of axioms originate theories
that are too weak to support equipollent equational counterparts. This is the
case of the theory (W) A (L) A (E), which postulates the existence of single-
element addition and removal operations only (cf. Sec.4.2). On the ‘positive’
side of the borderline, we provide automatically verified proofs of the equational
equipollence of a number of weak theories of aggregates.

1 Weak set-theories, pairing, and Peircean expressibility

In his epochal paper [26], Zermelo calls aziom of elementary sets a postulate
asserting that:
e there is a set, (), which is devoid of elements;



e a singleton set {z} can be formed out of any object = of the domain of
discourse; and, more generally,
e an unordered pair {z,y} can be formed out of objects x,y whatsoever.
In the original list of postulates for set theory proposed by Zermelo, this postulate
occupies the second position, after the extensionality axiom stating that distinct
sets cannot have precisely the same elements.

Let us place ourselves in the framework of a set theory which does not cater
to individuals or proper classes: then extensionality can be stated as simply as
(E) VeVy(z#y — Jv(vez o vdy)),
and Zermelo’s postulate of elementary sets can be decomposed as the conjunction

of the following null-set axiom and azxiom of unordered pairs:

(N) 3zVov¢z (P) VaVyIpVo(vep « (v=a V v=y)).

Several studies (cf., among others, [6, 19, 14]) indicate the number of dis-
tinct variables as a significant measure of complexity for sentences. From this
angle, one may be led to thinking that (P) is somewhat deeper than (E), be-
cause it involves 4 variables instead of 3. Alfred Tarski, however, discovered a
sentence (OP) which involves only 3 variables, is logically equivalent to (P), and
explicitly states the existence of ordered pairs (cf. [5, pp. 341-343], [23], and [24,
p. 129]). An important by-product of having the elementary set postulate recast
in 3 variables is that any first-order theory of sets to which (N) and (P) belong
(either as axioms or as theorems) can, through this rendering, be translated into
the arithmetic of (dyadic) relations (map calculus, as we name it). Namely, into
the algebraic formalism which developed in the forties (cf. [22, 17, 5]) from the
far-reaching studies on logic carried out by Peirce and Schréder in the late 19"
and early 20*" century. Recently, this approach to the formalization of set the-
ory via relation algebras inspired some research aimed at automating equational
set-reasoning (cf. [11, 9, 13]).

Tarski’s work shows that the notion of (ordered) pair plays an essential role
in the process of reformulating first-order theories within map calculus. The
availability of pair constructors (together with the corresponding projecting op-
erations) ensures the equipollence of the equational formulation of a theory and
its first-order formulation (see [24]). The crucial concept, in this connection, is
the one of conjugated (quasi-)projections: One names so two functions ¢,  which
are so defined on the universe V of sets (not necessarily on the whole of it) as to
ensure that for any given sets z,y there is at least one set z such that ¢(z) = x
and r(z) = y. Before proceeding to the definition of ¢ and r, one usually has in
mind a specific pairing operation z,y — p(z,y) by which the desired z can be
found out of given z,y simply by determining z = p(z, y); notice, however, that z
is not required to be unique in general. Whenever one proposes a concrete spec-
ification of ¢ and r, one must prove within map calculus that £, r are conjugated
(quasi-)projections (cf. Sec.2). This will ensure that a fully equipollent axiomatic
system of the weak set theory can be obtained via a classical translation from
first-order predicate calculus into map calculus.

To better understand Tarski’s idea on how to specify (P) in three variables,
one should bear in mind the encoding of ordered pairs in the form



(.13, y) T Def {{x,y},{x}}
devised by Kazimierz Kuratowski in 1921, and accept also the set { {z,y},{«},0 }
as a legitimate—though redundant—encoding for the same ordered pair. By way
of first approximation, (OP) can be formulated as follows:
(OP) VaVy3Iq(gmoxz A qmy),
where the abbreviating relators my and 7 designate conjugated projections as-
sociated with ordered pairs of the above kind and are defined as follows:
qozx <—>DOfE|s(x€s ANsegA-Ju(uesA u;«éx)),
viz., there is a singleton s in q to which x belongs;
qToT “psqox A mJv(qgov Av#x),
viz., there is a unique singleton s in q, and x belongs to s;
qmLYy <—>Def3w(y€w A wEQ) A ﬁﬂz(ﬂt(zet ANtEq) N —qmpz A z;éy),
viz., q has either the form {{z,y},{z}} or the form {{z,y}, {z}, 0}, for some .
Then, by unfolding 7y and 7; within (OP) and by judiciously renaming bound
variables, one can bring no variables other than x,y, and ¢ into play.

Even though (OP) and (P) can be shown to be logically equivalent to
each other, the intuitive meaning of (OP) differs from the one of (P). No-
tice, however, that if (OP) (which is readily seen to logically follow from (P))
is assumed, then, in view of the single-valuedness of m, for b = 0,1 (to wit,
YqVu Vv( (gmpu A qgmpv) — u=v )), the following becomes an intuitively ac-
ceptable 3-variable rendering of (P):

Vq(((EIv gmov) A (Jv qmv)) — dpVwu (v €Ep + (gmv V qmv))).
Under the assumption (OP) one could, with equal ease, get 3-variable formula-
tions of (W) and (L); e.g., (W) could be stated as follows:

Vq((EIv gmov) — IpVo (v €Ep < (gmv V Ip(gmep A v ep))) )

On the other hand, notice that VqEIva(v €Ep < (gmov V qgmv) ) would
not be an acceptable rendering of (P); in fact, should there be a ¢ devoid of
both mp-image and m;-image, then the set p corresponding to such a ¢ as here
specified would be null.

In this frame of mind, we will consider different alternative weak theories.
Since we will provide automated validations of our claims (cf. Sec.3). Next section
introduces the basics of map calculus and its deductive machinery.

2 Deduction in the arithmetic of dyadic relations

We will slightly adapt here the notions developed in [24] as an evolution of
the algebraic approach to logic first proposed by Augustus De Morgan, Charles
Sanders Peirce, and Ernst Schroder.

In the arithmetic of dyadic relations one can state, and infer, properties of
relations—maps—over an unspecified, yet fixed, domain U of discourse. The sig-
nature of the ground language £* underlying map calculus consists of constant
symbols (i.e., :@, 1, and ¢); a single map letter, € (of arity 0, like constants, but
freely interpretable); primitive Boolean map operators, N and A (both dyadic),
and Peircean map operators o (dyadic) and = (monadic), in terms of which



PNQ = QNP toP = P
PN(QAR)APNQ = PNR pP=— =P
(Px1Q)x1 R=Px (Q*1 R) (P%2Q)~ = Q~ %2 P~
“o(RN(PoQAR))NQ =0 1NP =P
((PAQ)APNQ)oR = (QoRAPoR)AQoRNPoR
*1 € {A,N,0} and *» € {N, 0}

Fig. 2. Logical axioms of map algebra

other constructs such as U and \ (dyadic), and  (monadic complementation)
can be expressed.?

Semantics can be assigned to the terms of this signature simply by fixing a
nonempty domain U, by choosing a subset € of the Cartesian square U x U as
interpretation of the map letter €, and by then interpreting in the usual manner
the bas1c constants and constructs:

—Def®7 1° =peild X U, 5 :Def{(a7 a) |l ain U};
(QNR)® =per{ (a,b) € Q% | (a,b) € R® };
(QAR)® =purf (a,5) € Q% I (a,b) ¢ R} U {(a.h) € B 1 (a,h) £ Q% };
(QOR) =pet{ (a,b) € 17 | there are pairs (a,c) € @~ such that (¢,b) € R };
(@)% =purl (b,a) | (a,b) € Q% }.
The intended domain U of discourse, in this paper, is the universe V of all sets.
Properties of maps can be stated through map equalities Q@ = R whose sides @, R
are map expressions. The language £* can be extended profitably with many
derived operators (in addition to U, \, ) and with a number of shorthand pieces
of notation for equalities, as illustrated below:®
PCQ HDefP\sz
RUniq(P) <> pes P oP Cue LUniq(P) < per RUniq(P™)
funcPart(P) =p. P\ Pot valve(P, Q) =pes P\7T0(P\Q)
syq(P,Q) =per P~ 0QNP~0Q noy(P) =per syq(P, P)

In order to characterize the behavior of the map constructs, a number of
axioms are imposed. Fig. 2 shows an axiomatization involving the primitive
map constructs. The choice of such logical axioms is a preparatory step for the
development of an inference machinery for map-reasoning—and, subordinately,
for set-reasoning.

The problem of translating first-order sentences or entire first-order theories
into map calculus has been treated, among others, in [4, 13]. In particular, the
(re-)formulation of the Zermelo-Fraenkel theory ZF within map calculus amounts
to introducing, in addition the logical axioms, a number of proper axioms to re-
strain the possible interpretations of the primitive map €. Fig. 3 shows translated
versions of (E), (N), (OP), (R), and (A™) in this ground equational formalism,
where the steps in the formalization of (OP) reflect the ideas discussed in Sec.1.

As already said, the crucial concept in obtaining relational counterpart of
given theories, is the one of conjugated projections. Formalized within £*, the

4 We assume that the priorities of these operators are decreasing w.r.t. the ordering
7v7o7m7A’U7 \'
5 The noy operator was introduced by Jacques Riguet in 1948.



S =per € D3 =per D 0D
€€ =pesr €0 E ZE =pss €EOE
O =Def 90(9\90Z) mMix =ps EENEZE
0 =pet O \ O OL 71 =pet 9D \ (33 \ 7o )o0T
(E) t = noy(€) (N) 1 = 1o€ol
(OP) 1 = @wy~ om (R)Loe = 1o(e\>do€)
(A") 0 = €o--r0E€ENL
—_——
n—+1 factors

Fig. 3. Shorthand notation and a Peircean specification of a very weak set theory

i.] LUniq(P), LUniq(Q) & LUniq(PoQ) iv[]QoQNe = 8 Runiq(P\ Po (2\Q))
ii. LUniq(Q) ¥ LUniq(valve(P, Q)| v. = RUniq (funcPart(P))
iii. (E) ¥ RUniq(syq(P,€)) | vi. (A2 1) RUNiq(v,,41)

here —perd\D0(Z\ €0---0€
where v,, =per3\30(z\ )

fact
Fig. 4. Basic lemmas proved with Otter in map calculus naetors

conditions for two maps to be conjugated (quasi-)projections are:
£~ or=1, RUniq(¢), RUniq(r).
Notice that £~ or=1 directly reflects into the equational formulation of (OP).

General translation techniques can be designed, by which one can translate
any first-order formula of the set-theoretic language whose only primitive pred-
icate symbols are = and € into map calculus, when conjugated projections are
available. Any equation of map calculus can easily be translated, in its turn, into
a 3-variable first-order sentence (cf., e.g., [24, Chap.4] and [11]). Of course the
same reduction to 3-variable sentences can be performed under axioms differ-
ent from those in Fig. 3, provided such axioms enable one to identify a pair of
conjugated projections.

As mentioned, previous research shown the possibility of automating equa-
tional reasoning based on relational specifications of the kind given in Figures 2
and 3 (cf. [12, 13], for instance). The first aim of this activity consisted in prov-
ing a collection of general algebraic laws mainly related to functionality of maps
(cf. Fig. 4). This task prepares a solid ground for the development of further
experimentation on the set-theoretical notions of ordered pair.

Some of the proved laws are of particular interest on their own. For instance,
consider law iii of Fig. 4. Otter was able to prove both this law and its converse
(cf. [3]) This result certifies that the map equality RUniq(syq(P, €)) constitutes
an alternative formulation of the extensionality axiom (E).

A crucial law among those in Fig. 4 is iv. Let us now briefly sketch the proof
of this law as generated with Otter. After introduced the definition:

protoFuncPart(P, Q) =p.. P\ (PoQ),
the leading derivation steps yielding the desired proof of iv are:
- funcPart(P) = protoFuncPart(P, 7)
- protoFuncPart(P, Q) N protoFuncPart(P, Q)oQ = 0
- protoFuncPart(P, Q) o protoFuncPart(P,Q) C Q



- protoFuncPart(P, Q) o protoFuncPart(P,Q) C QNQ™~

- QoQ C © ¥ RUniq(protoFuncPart(P, 2N Q))

- QoQne=10pF RUniq(protoFuncPart(P, 7\ Q))
Each of the above proof steps has been derived by using the axioms (cf. Fig. 2)
and a collection of lemmas on map constructs (cf. [12, 13]).°

As corollaries of iv, Otter easily obtained the proofs of v (timing: 0.01 sec.,

length: 3) and of several instances of the scheme vi of Fig. 4 (for instance, in the
case n = 3, the length of the generated proof is 4 and it was obtained in 0.75
sec). This is an excerpt of the laws (mainly related to functionality of maps)
that have been obtained with Otter:

law length (steps)/time (sec.)|generated/kept clauses
RUniq(@) 1/0.06 917/109
RUniq(c) 1/0.06 917/109
RUniq(P) ¥ RUmq(PﬂQ) 7/1.86 26575/4371
RUniq(P), RUniq(Q) ¥ RUniq(PoQ) 6/0.05 926/217
valve(P,Q) C P 2/1.11 11435/6041
valve(P,Q) C 7o (PNQ) 5/1.10 12334/5893
Rovalve(P,Q) C Roto(PNQ) 4/0.94 19114/2324
valve(P,Q)NR C PNR 5/0.20 3791/670
P CQF vae(P,Q) = P 5/0.90 11600,/4079
LUniq(Q) ¥ LUniq(valve(P, Q)) 12/66.27 253318/15441

3 Expressibility in 3-variables

In this section we consider three alternative weak aggregate theories and intro-
duce suitable notions of ordered pair. For all these pairing notions a couple of
relations will be defined and proved to meet the conditions to be a pair conju-
gated quasi-projections. These results certify the equipollence of the equational
formulations of our theories and their first-order formulations.

3.1 Expressibility of (E) A (N) A (W) A (L) in 3 variables

In our own formalization of the axiom of elementary sets, very much like in
Tarski’s one, the notion of ordered pair will be the hinge of the formulation in
three variables. The pairs we have here in mind are as follows:
(,y) =pe { {y}lessz, {y}withz}
where the binary functions less and with, and the constant (), result from the
Skolemization of (L), (W), and (N), respectively, and
{v, w} =pe; (0 with v) with w, {v}=ps{v,v}.

Although the structure of such pairs only marginally departs from the Kura-

towski’s pair notion, we need to assume the extensionality axiom, (E), which is

5 The complete details of this proof (such as timings and settings of Otter’s parame-
ters), as well those regarding all other laws proved by using Otter, can be found in
the section EXPERIMENTS at http://bach.dipmat.unipg.it:8080/rainweb.




not necessary with the traditional approach. By proceeding in a way similar (but
much simpler) to the way (P) got restated as (OP), we achieve the following
restatement of (N) A (W) A (L):

(D) VxVyEd(yed/\Vv(ﬂw(vew Awed) A lvgl A Led) o v:x)),
which under the renaming v — y, w — x, £ — z of bound variables becomes a
3-variable sentence. This (D) says that one can build the set { y less z, y with }
out of sets x, y whatsoever. Only indirectly, it enables one to form singletons, the
null set (), and ordered pairs of the form (z,y). By bringing (D) into Skolemized
form we get:”

(D) Ye(YOX)AVo(Fw(vew AN weY@X)A (vl ANeYRX) < v=X),
which is equivalent to the conjunction of (N), (W), and (L), in this sense:

e under (N), (W), and (L), one can define X@Y =, {X lessY, X withY'}
and then derive (D’);

e under (E) and (D’), one can prove that
(W) JweY@XVv(vew < veY Vo=X),
(L") HeY@XVv(vel <+ veY Nv#X),
(N) 3s€(Y@X)@Y JecsTzece@sVvuv ¢z,
whence (W), (L), and (IN) readily follow.

By introducing a suitable pair of map-expressions:
A =p. valve(mix, B) 0 =p valve(EE,A)
the following comes out to be an immediate translation of (D) into the arith-
metic of relations:
(D) 1 = Ao>3,

while the relations A~ and o™~ constitute a pair of conjugated projections cor-
responding to our notion (x,y) of ordered pair very much like the expressions
T, 1 in Fig. 3 designate projections associated with Kuratowski’s pair notion.
In the arithmetic of relations it can easily be proved that LUniq(A) and LUniq()
both hold (viz., A, 0~ designate partial functions). These laws can be easily
proved from law ii of Fig. 4 and the simple lemma LUniq(@). Otter was able to
prove LUnig(A) in 0.01 seconds by producing a proof of length 3. Then, a proof
of length 3 of LUnig() has been obtained as an immediate corollary.

We also succeeded in deriving the analogue 1 = Ao @~ of (OP) from (D)
and (N) (cf. [3]); on the other hand, we have been unable to obtain this unless
by assuming (IN). Nevertheless, we can be sure that (N) follows from (D) in
the arithmetic of relations, because if we put p =p. Ao (G N>oto mix) then
(much more easily than for g) one can prove that 1 = Ao p~, and one can
easily derive LUniq(p) from (E). In defining this new p, we have in mind a second
variant of Kuratowski’s pair, which is

[2,9y] =p (@y)@z.

Otter’s proof of 1 = Ao p™ relies on the following lemmas:

” From now on, we will adopt the convention that uppercase variables are meant to
be universally bound.



law length/time (sec.)|gener./kept clauses
PoQ=1 F Po(QNQ~oP~)=1 3/0.03 169/51
PoR—NS C Po(R~NP~0S) 2/0.25 4499/305
PCQ ¥ Po(RNP~0S)C Po(RNQ~0S) 4/3.45 16941 /5070

From them, these proof steps yielded the proof of our thesis:
- (D) ¥ (€ENAXod)oA~ =1
- €ENAXod C Ao(dN(tomix)~0€)
- L=(ENXo3d)oAx™ C (Ao(dN(tomix)~ o€
- 1 = (Xo(3N (zomix) T 0E€))oA™
To prove LUnig(p) from (E), the following auxiliary lemma had to be proved:
(E) ¥ LUniq(€ N> ozomix) . (1)
Here is the trace of the proof generated with Otter. Notice that it was necessary
to prove a number of auxiliary lemmas.
- PoQo@Q— CP
- (WNRoQ)oT C ¢ ¥ RNWo(Q~ NToP)=10
- PNRoS™o(Q~NToP)=0 ¥ (QNP~ 0T~ )oSNP~oR =0

length:3; time:0.03
length:4; time:0.11
length:7; time:4.11
length:5; time:0.25

))oA™

- PoOR™NS=0 ¥ (PoRmQ)”mS =0
- (RoS~NPoQ)oT C 1 ¥ (QNP~ 0T )oSNP~oR =10
- (PoPNPoP)oto(PoPNPoP)~ C1 ¥ (PNP~oto(PoPNPoP))oP~ NP~ oP =0
- (PNP~oto(PoPNPoP))oP~" NP oP =0
- (PAP~oto(PoPNPoP))o(PNP™ oto(PoPAPoP))~ NP~ 0P =
- (PNP~oto(PoPNPoP))o(PNP~ oto(PoPNPoP))" NP~ oP =0
(

ENSoto(EoENFoE))o(ENDoto(EcENZOE)) " N(Do € UDog) =10

The overall time spent in proving these laws was 15.62 seconds. The longest
and most time-consuming proof was the one of the last law: length 8 in 6.52
seconds. From the last of the above laws, by the definition of noy and mix, and
by assuming (E) we can conclude the proof of (1).

At this point, LUniq(p) could be derived readily by means of law i in Fig. 4.

3.2 Expressibility of (E) A (A™) A (W) A (L) in 3 variables

In this section we show that under (E), one can drop the null-set axiom (N),
provided that acyclicity of sets is assumed (by means of (A™)). In this case,
in fact, (W) and (L) suffice to support suitable notions of ordered pair. The
ordered pair we deal with in this section is
|X,Y] =p. Xwith(Ywith(YwithX)).

Corresponding to this pair we introduce the following pair of relations:

a =p; syq(ENEEo€E, €), and B =y Y30syq(ENEE, €),
to be meant as left and right projections, respectively.

Consider that both (E) and (A™) have already been expressed within the
map calculus (cf. Fig. 3). Moreover, by (A?), we immediately obtain RUniq(a)
and RUniq(8) —Otter generated the proofs of these facts in 0.01 (length 2)
and 0.06 (length 6) seconds, respectively, by using the laws in Fig. 4. As a
consequence of these results, an easy manner to express (E) A (A™) A (W) A (L)



10

in 3 variables consists in explicitly asserting a further pairing axiom:

(OP,) a~ o3 = 1.
This ensures that a and 3 are a pair of conjugated projections. Notice that
this law follows from (E) A (A%) A (W) A (L) within the predicate calculus. At
this point, by means of the pair of conjugated projections o and 3, we can
express both (W) and (L) in three variables, in order to complete the equational
rendering of (E) A (A™) A (W) A (L).

3.3 Expressibility of (R) A (N) A (W) A (L) in 3 variables

Unlike the pair notions analyzed so far, the one to be examined in this section will
not benefit from the extensionality axiom (E). Each one of the two pairing func-
tions considered in Sections 3.1 and 3.2 has some advantage over Kuratowski’s
pairing: one leads, in fact, to very simple specifications of the projections and,
consequently, to a terse formulation of the conjunction (N) A (W) A (L) (pro-
vided (E) is assumed); the other one, even though more cumbersome, can be
exploited in certain contexts where Kuratowski’s pairing is not viable, because
there is no guarantee that the operation X +— {X} can be performed.

Here we are assuming (N) A (W)—which yield (P); Kuratowski’s pairing
would hence be viable, but we propose a notion of pair which relies on the ax-
ioms (L) and (R) too. Save for the fact that the associated projections car and
cdr are total (which is a rather marginal virtue), we make no claim that these
projections are any better than the projections my, w1 discussed in Sec.l (see
also wg and 7y in Fig. 3). However, since proving that car and cdr meet the
formal properties of conjugated projections requires some labour in first-order
logic, a labour which we have already afforded with Otter, we can take this as
a benchmark from which to start comparing the performances of an automatic
theorem-prover confronted with full first-order reasoning on the one hand, and
with purely equational reasoning on the other, in carrying out the same task.
Currently, we have not provided yet a full equational proof that car and cdr are
conjugated projections, and leave this as future work. The notion of pair we
adopt here is:

1X,Y] = {{X} (XL V1
Consequently, a pair of conjugated projections car and cdr can be so defined:
arb =p.¢ funcPart(3 \ 3€), car =p. arboarb,

arb_lessArb =p.; syq(€\arb™, €)oarb,  cdr =p.; syq(€ oarb_lessArb™"\arb™, €) ocar.
Clearly, functionality of arb and of car directly follows from laws in Fig. 4. How-
ever, we have been unable till now to obtain Otter-proofs of RUniq(cdr) and of
car~ocdr =1 within map calculus. Obtaining a proof of RUnig(cdr) will be our
next task in this work. After obtaining such a proof we could, at worst, complete
our weak theory by adopting car~ocdr = 1 as one of our axioms, analogously
to the way we have proceeded in the previous case.
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4 Inexpressibility in 3-variables

In Sections 4.1 and 4.2 we will prove that the axiom (W), neither considered in
isolation nor taken together with (L), can be expressed with only three variables.
To show this, we will rely on a model-theoretic method introduced in [16]. This
method centers around so-called pebble games, which are two-player processes
closely akin to the older Ehrenfeucht-Fraissé games (cf. [8, 15]). We will proceed
by first singling out two structures which disagree on the truth-values of (W)
and (L) but agree w.r.t. (E); games will then be the essential tool for proving
that these structures are indistinguishable by formulas in three variables. Our
aim will be to suggest the winning strategy to the player, named Duplicator, in
favor of which our inexpressibility analysis will be inclined.

The way in which we will carry out this 2-stage investigation, will turn out
to be somewhat more ‘semantic’ than, for example, the application of games in
establishing the inexpressibility of the density property in structures of propo-
sitional linear time logic (see [16, 25]). Localization, the approach which under-
lies inductive constructions of the winning strategies for exploitations of pebble
games in the realm of temporal structures (either linear or not), does not appear
adequate to behave well in our framework. The reason is that models of weak
set theory are very poor in structure compared to models of time, which are
either lines or trees. In our framework, in order to suggest the winning strategy
to Duplicator, it will be necessary to provide a deeper insight in the peculiarities
of the structures than is necessary for temporal structures. As a matter of fact,
to set the ground for the desired strategy we will be forced to impose somewhat
artificial orderings on the domains of the structures.

The proofs of all the results we present in this section can be found in [10].

4.1 Inexpressibility of (W) in 3 variables

Preliminary to the stronger result to be discussed in Sec.4.2, we show that (W)
is not expressible in 3 variables, closing the question addressed in [20] and [24].
We proceed by exhibiting a ‘rich’ structure, R, and a ‘poor’ structure, 8, which
model (W) and —(W), respectively. The inexpressibility of (W) in 3 variables
will be proved by showing that these structures satisfy the same collection of
sentences in (at most) 3 variables. In turn, the equivalence of 9t and 3 relative to
sentences in 3 variables will be proved, as already announced, by the technique
based on pebble games. In our case the players, named Duplicator and Spoiler,
own three pebbles each (the number of pebbles clearly corresponds to the number
of variables which we regard as the critical threshold).

This section well illustrates the valuable insight provided by pebble games in
expressibility analysis. Notice, however, that a simpler conceptual tool already
present in [20] would have sufficed to treat the case at hand. On the other hand,
the next case before us, to be treated in Sec.4.2, seems to lie beyond the power
of Kwatinetz’ approach.

Definition 1. LetN={0,1,2,...},Z=NU{ —i |i € N}, and let | X| designate
the cardinality of any set X. A subset A of Z is said to be REPRESENTABLE if
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it meets the condition 0¢ A N |A\N| <Rg A I[N\ A| <Rg. Fori,j € Z and
X C Z, we define interval, left endpoints, radius, and footprint as follows:
[i,5) =ps {hE€Z1i<h N h<j}, lend(X) =py {i € X 1i—1¢ X},
rad(X) =py min{i € N | lend(X) C [—4,4] }, fool(X) =pe X N [—rad(X), max(lend(X))].
O

By little reflection, one sees that any representable set A can be uniquely de-
composed in the form of a disjoint union

A = ULin2i-1,me] U UjSgp2gipegen] U{REZ 1k >pon},
of non-void intervals some of which may be singletons, one of which is infinite,
and whose (left and right) endpoints form the set

lend(A) U{ieAli+1¢ A} ={n1,...,n2} U{pos...,02.x },
where the n’s are negative integers, the p’s are positive integers, and v, 7 € N.
The footprint foot(A) of such an A is a set which, despite having finite cardi-
nality, fully characterizes A. Notice that rad(A4) = rad(foot(A)) holds for any
representable set A; moreover, a finite set X C Z equals foot(A) for some repre-
sentable set A if and only if 0 ¢ X # ) holds.

Ezample 1. Let ng < --- <ng=mng < ---<ng <0< py <--+ < py be integer
numbers and consider the representable set so defined: a = [ny,n2] U {nz} U
[n5,n6] U [po,p1] U{k € N| k > pa}. This set of integers can be graphically
represented as follows:

A graphic rendering of a representable set a with its left endpoints e
and its footprint

ny na n3 ns ne 0 po p1 P2
| | |
'y | ° ' | d | s

[ S

Let Z' = Z\ {0}. The respective domains of R and P are defined as follows:
R =p. Z' U {A C Z | A is representable }7
PB=pZU{BCZ|BeR A |foot(B)]is even },
The interpretation €™ of the membership relator in R is defined as:
ai GmQQ < Dot (CLQESR\Z/ — a1€a2U(m\Z/)),
with ay,as € R. While the interpretation €¥ simply is the restriction of € to .
The following result can be easily proved:

Lemma 1. Both R = (W) and P = (W) hold.

Prop.1, below, states the result sought for. Its proof is based on the main
result on pebble games (cf. [16, Thm.C.1] or [8, Thm.2.3.2]). Namely, “Duplicator
has a winning strategy in any 3-pebble-game played on the two structures R, 3,
if and only if R and P model the same sentences in (at most) 3 variables.”

Proposition 1. Duplicator has a winning strategy in any 3-pebble-game played
on the two structures R, P. Thus, (W) cannot be expressed in 8 variables.

4.2 Inexpressibility of (E) A (W) A (L) in 3 variables

Now, we will show that the conjunction (E) A (W) A (L) cannot be stated by
means of a 3-variable sentence. We will see that the difficult moves for Dupli-
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cator will be the ones in which Spoiler chooses in R = (SR, E%) and Duplicator

must answer in P = (B, €F), two structures satisfying (E) and such that (W)

and (L) are true in R and false in P. In order to devise the strategy in those

cases, we will perform a ‘spiral’ construction of an embedding of fi into . Rep-
resentable subsets of Z, together with all pertaining notation (rad, foot, etc.),
will again enter into this spiral construction. We start by putting

R =p { A CZ | Ais representable },

B =p { X € R [X N[0, rad(X)]| = |lend(X \N)| },

and, preliminary to defining the interpretations €®, €¥ of the membership rela-

tor in the two structures, we observe that a dyadic relation < on R exists such
that < is a total ordering, and the following conditions are met, for all X, Y € R
(It can be proved that such an ordering exists, cf. [10, pp.7-8]):
1) rad(X) < rad(Y) implies X <Y;
2) there are infinitely many ¢ € N such that a representable set V € P with
foot(V)) = {—€} U foot(X) is the smallest among all representable sets W
with rad(W) = ¢,
3) if X is the smallest among all representable sets W satisfying rad(W) =
rad(X) = £, then £ € X € .
Next, in terms of <, we define two bijective functions
Jn: R — Z\ {0}, Jp: P — Z\ {0},

which associate integer indices with representable sets. Here are Joz and Jop:
Tn(X) =pe;min( X\ {In(Y) I Y ER AN Y <X });
jgp(X) =pes minEX\ gjq_g(Y) [YeP ANY < X%g

These definitions clearly make sense and ensure the injectivity of Jx and Jgp.

Then, for each X (processing all representable sets according to the ordering <),

we are choosing as index Jp(X) the least number j in X which has not been

chosen as index Jx(Y') for any ¥ < X—and analogously with Jg.
Membership is then interpreted in terms of J in 93, and in terms of Jgs in B:
XNy iff Ix(X) ey, VePY iff Jp(V) €Y,

where X € R, V € B, and Y C Z. The verification that both SR and ‘B satisfy

(E) while (W) and (L) are true in SR and false in B are left to the reader.

Notice also that X €® X and Y €* Y hold for all X € R and Y € .

Our next proposition asserts, among other things, that Js and Jgp are sur-
jective on Z \ {0} (as we have announced before):

Lemma 2. For all £ € N\ {0,1,2}, there are representable sets a,b,b’, with
b0 € B, such that Ix(t') = Ipt') = —¢, Tn(a) = Ip) = ¢, rad') =
¢, and rad(a) = rad(b) < L. Similar statements, with rad(a) = rad(b) = ¢, hold
when £ = 2,1.

As a direct consequence we have the following

Corollary 1. Either Jn(a) = —rad(a), or Ix(a) > rad(a) —in particular,
JIn(a) > rad(a) if rad(a) > 2— holds, for each set a € R. The situation with
Jg(b), b € B, is entirely analogous. |

The following notion will play a crucial role in the proof that & and P are
indistinguishable by means of a 3-pebble game:
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Definition 2. An EMBEDDING of R into P is an injective function k : R — P
such that, for all a’,a” € R and b € P, the following conditions hold:
a €™ a’ « k(a) €¥ k(a"),

be® k(a) A be* k(a”) - JaeR b=rk(a).
O

The reader may benefit from the following, equivalent, way of expressing the
requirements in the definition of embedding in terms of symmetric set-difference:
k(a") 2 {Jp(k(d)) I o' €™ a"} A K(a”) N {Tg(s(a)) | o’ ¢7 a”} =0,
k(a') A k(a") = {Jp(k(a)) | a €®a’ Ad"},

where a’,a” € R.

A main step in our treatment consists in proving that an embedding of R
into P exists. An important intermediate result is the following

Corollary 2. Let a,a’a” € R. If ' < a and o’ €® a”" A a, then either a’ < a,
ora =a and JIxn(a) = —rad(a).

The following pseudo-algorithm, which exploits the enumeration ag, ay,... of R
associated with <, will guarantee the existence of an embedding from R into .
Lemma 3 states correctness of the procedure.

k := 0; - initialization of embedding
fori:=0,1,2,... (ad inf.) loop
let a; be the next element of R w.r.t. <;
pick b; in P so that, for all j < i, k(a;) # b; and the following
conditions are met:
1. a; Em a; <> n(aj) G;B bi,
ii. jm(ai) >0 < b ¥ K;(aj),
k(aj) Ab; = {Ip(k(a)) 1 d #ai A (a € a; < o ¢"a)}
U (if a; ¢™ a; then {Jn(b;)} else 0 end if);
k(ai) := bs;
end loop.

Lemma 3. The above procedure does mot terminate and defines a function K
which is an embedding of R in P.

Remark 1. Notice that one could initialize x at the beginning of the embedding
procedure as any finite partial function from PR to PB. Then, replacing the let-
statement by:
let a; be the next element of | w.r.t. <, whose x(a;) is still undefined;

the thesis of Lemma 3 continues to hold as long as the indices of the x(a)s in the
range of the initializing partial function are chosen cum grano salis: their value
must guarantee that the b;s to be defined later will belong to B. In particular,
this will be the case whenever the initializing partial function is an initial segment
of a given embedding. |

Our next task consists in proving the impossibility to distinguish the ‘rich’
structure R from the ‘poor’ structure B by means of sentences involving only
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three variables. Before doing so, we need to introduce some definitions charac-
terizing a sort of partial embedding that will be used when we must update the
embedding suggesting the strategy to Duplicator.

Definition 3. We will call A-CLOSURE of a set X C R the minimum fized point
defined as follows:?®
AX =, (0Y D X)(a,beY —» aADCY). O

Notice that the A-closure is defined as being a fixpoint of the monotone non-
decreasing function X — X U J{alb : a,b € X} (= X U{c € RI| (Fa,b €
X)(c €™ alb)}). Let < X denote the set {y | (3z € X)(y < z)}. By Corollary 2,
we have that AX C< X; hence AX is finite when X is a finite set, because
obviously < X is finite in this case.

From now on, let a (resp. b), with or without subscripts or superscripts, indi-
cate a generic element of R (resp. B ), and let & = aq,...,qa; and b=by,...,b.

Definition 4. We say that A{a} and A{b} are 15OMORPHIC, A{a} ~ A{b}, if
there exists an €-isomorphism from the former into the latter sending a; to b;
forje{l,...,i}. o

An isomorphism between A-closures is a sort of partial embedding. The fol-
lowing lemma proves the possibility of extending partial embeddings.

Lemma 4. If A{a} ~ A{b}, then (Vb ¢ A{b})(3a) (A{a,a} ~ A{b, b}). More-
over, if Jp(b) > 0 then In(a) > 0, and if Ip(b) < 0, then In(a) < 0 and
infinitely many such a are available.

By virtue of Lemma 4, Thm.1 gives the result sought for. In its proof (cf. [10])
we resort to pebble games and prove that there exists a winning strategy for
Duplicator in any 3-pebble game played on R and ‘3.

Theorem 1. The structures R and B cannot be distinguished using a 3-pebble
game. Then, (E) A (W) A (L) cannot be expressed in 3 variables.

5 Conclusions

The table below summarizes the ‘positive’ results contained in this paper, ob-
tained with the assistance of Otter as described in Sec.3. Moreover, its row
where dashes occur is meant to indicate that a pairing notion is missing under
specific, relatively weak axiomatic assumptions: this recalls the negative result
discussed in Sec.4. These results identify a sharp borderline to be crossed for
an ‘algebraization’ of Set Theory. In fact, they clearly indicate that 3-variable
expressibility intimately depends on reasonable restraints imposed on the struc-
ture of the universe and on precise properties of membership. Studies of this kind
contribute to the rather fine classification, undertaken by Tarski and Givant [24,

8 We will sometimes abuse notation, as here, by applying certain relations (e.g. D or
=) or operations (e.g., A, U, or N) to sets whose elements should be ‘de-referenced’
as common-sense will suggest, by applying either Jy or Jnx.
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Sect.4.6], of the conditions enabling an aggregate theory (even a very weak one)
to be formulated within the algebra of (dyadic) relations.

Axiomatic assumptions Pairing construct Short |Projections
(P) }{m,y}p[x}} (l'7y) ™o, T1
(W) A (L) A (N) {z,y} {z}} (z,y) | mo, m1
(E) A (W) A (L) - - -
(E)A(W)A(L)A(N) [{{zlessy, = with y} less z, {x lessy, z withy} withz}| [z,9] | X7, p~
(E)AMW)IADL)A (NZ {{y} less x, {y} with x} (z,y) | A7, 0~
(E)A(W)A(L)A(A?) x with (y with (y with z)) |z, y| o, B
(R) A (W) A (L) A (N) {{x},{{m}{y,{y}}}} [z,y] | car, cdr
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