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Abstra
t. Pattern-mat
hing 
an be used to develop query languages for

information retrieval/extra
tion tasks. The operational basis is simple,

sin
e do
uments and queries 
an be represented using the same kind

of stru
ture, do
uments or fragments that satisfy the query and whi
h

would be those that are 
losest to its stru
tural representation. In

this sense, pattern-mat
hing makes it possible to 
ombine a variety of

stru
tural 
onstraints in 
exible ways, allowing the query to be de�ned

approximately, or even omitting some stru
tural details.

Our goal is to analyze how the la
k of stru
tural information in queries

may degrade performan
e, and to illustrate the relation between the


omputational work and the e�ort applied by the user to des
ribe these

queries.

1 Introdu
tion

Representing do
uments and queries as stru
tures is a natural way to introdu
e

pattern-mat
hing as an operational model for a query language [2℄. In relation

to other approa
hes, this one provides the 
exibility to a

ess di�erent views of

the database, sin
e it is not always evident how to do this using te
hniques based

on 
lassi
 indexing methods. This 
apa
ity 
an be used to adapt a formal query

model to pra
ti
al user queries, in order to design query languages that are 
loser

to natural ones, where the level of pre
ision is not easy, or even impossible, to

de�ne.

In the 
ontext 
onsidered, pattern-mat
hing 
an be studied from two di�erent

points of view: 
omparing stru
tures that 
an only be approximately de�ned [7℄,

or introdu
ing variable length don't 
are (vld
) te
hnology in order to omit

stru
tural details [8℄. In the �rst 
ase, pattern-mat
hing 
an be applied to deal

with queries that 
an only be approximately de�ned, whi
h often o

urs. In

the se
ond 
ase, the te
hnique 
an be applied to deal with la
k of information

in queries, either be
ause it is unavailable to the user, or simply be
ause

the user wants to redu
e his own workload. Both strategies 
an 
orrespond

to 
omplementary phases in the de�nition of a query 
onsidering intera
tive

expansion [1℄ and, from the point of view of the user, they make it possible to




ontrol the level of detail in the retrieval/extra
tion pro
ess [6℄. Whatever the


hoi
e, it impa
ts on both system performan
e and implementation te
hniques.

A subje
t of additional interest is the exploitation of sharing between target

stru
tures with 
ommon nodes, whi
h may lead to an in
rease in 
omputational

eÆ
ien
y in approximate pattern-mat
hing [4, 5℄. In e�e
t, although in the 
ase

of the query language ambiguity 
ould probably be eliminated, impre
ision in

the language intended to represent the do
ument produ
es ambiguity. Sin
e

it is desirable to 
onsider all possible interpretations for semanti
 pro
essing,

it is 
onvenient to merge stru
tures as mu
h as possible, sharing 
ommon

parts. This 
ould be applied to a variety of problems, su
h as natural language

pro
essing, where ambiguity and stru
tural sharing are 
ommon [3℄. Another 
ase

is mole
ular evolution, with many examples indi
ating that gene dupli
ation with

fusion has o

urred extensively in the past. This provides an as yet unexplored

route to the evolution of new fun
tions from existing proteins.

Our aim in this paper is to look for both theoreti
al foundations and pra
ti
al


onstraints in the existing relationship between stru
tural and 
omputational


omplexity in dealing with query languages based on pattern-mat
hing, and to

fo
us on the treatment of stru
tural sharing. In this way, we hope to bring to

light some of the fa
tors governing the me
hanisms behind the pra
ti
e, and

their impa
t on 
osts from the user's 
hoi
es in query pro
essing.

2 The editing distan
e

Given P , a pattern tree, and D, a data tree, we de�ne an edit operation as a

pair a ! b; a 2 labels(P ) [ f"g; b 2 labels(D) [ f"g; (a; b) 6= ("; "), where

" represents the empty string. We 
an delete a node (a ! "), insert a node

(" ! b), and 
hange a node (a ! b). Ea
h edit operation has a 
ost, 
(a ! b),

that we extend to a sequen
e S of edit operations s

1

; s

2

; : : : ; s

n

in the form


(S) =

P

jSj

i=1

(
(s

i

)). The distan
e between P and D is de�ned by the metri
:

Æ(P;D) = minf
(S); S editing sequen
e taking P to Dg

Given an inverse postorder traversal, as is shown in Fig. 1, to name ea
h node i

of a tree T by T [i℄, a mapping from P to D is a triple (M;P;D), whereM is a set

of integer pairs (i; j) satisfying, for ea
h 1 � i

1

; i

2

�j P j and 1 � j

1

; j

2

�j D j:

i

1

= i

2

i� j

1

= j

2

P [i

1

℄ is to the left of P [i

2

℄ i� D[j

1

℄ is to the left of D[j

2

℄

P [i

1

℄ is an an
estor of P [i

2

℄ i� D[j

1

℄ is an an
estor of D[j

2

℄

whi
h 
orresponds to one-to-one assignation, sibling order preservation and

an
estor order preservation. The 
ost, 
(M), of a mapping (M;P;D) is 
omputed

from relabeling, deleting and inserting operations, as follows:


(M) =

X

(i;j)2M


(P [i℄! D[j℄) +

X

i2D


(P [i℄! ") +

X

j2I


("! D[j℄)



where D and I are, respe
tively, the nodes in P and D not tou
hed by any line

in M . Tai proves, given trees P and D, that

Æ(P;D) = minf
(M); M mapping from P to Dg

whi
h allows us to fo
us on edit sequen
es whi
h are a mapping. We show

in Fig. 2 one example of mapping between two trees, and a sequen
e of edit

operations whi
h do not 
onstitute a mapping. We also introdu
e r keyroots(T )

as the set of all nodes in a tree T whi
h have a right sibling plus the root, root(T ),

of T . We pro
eed through the nodes, �rst determining mappings from all leaf

r keyroots, then all r keyroots at the next higher level, and so on to the root. The

set of r keyroots(T ) is indi
ated by arrows in Fig. 1. In dealing with approximate

vld
 pattern-mat
hing, di�erent strategies are then appli
able. Following Zhang

et al. in [8℄, we introdu
e two di�erent de�nitions for vld
 mat
hing:

{ The vld
 substitutes part of a path from the root to a leaf of the data tree.

We represent su
h a substitution, shown in Fig. 2, by a verti
al bar "j", and


all it a path-vld
.

{ The vld
 mat
hes part of su
h a path and all the subtrees emanating from

the nodes of that path, ex
ept possibly at the lowest node of that path. At

the lowest node, the vld
 symbol 
an substitute a set of leftmost subtrees

and a set of rightmost subtrees. We 
all this an umbrella-vld
, and represent

it by a 
ir
um
ex \^", as shown in Fig. 2.
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Fig. 1. The forest distan
e using an inverse postorder numbering

We now 
apture the use of vld
 symbols. Given a data tree D and a

substitution s on P , we rede�ne: Æ(P;D) = min

s2S

fÆ(P;D; s)g, where S is

the set of all possible vld
-substitutions, and Æ(P;D; s) is the distan
e Æ(

�

P ;D),

being

�

P the result of applying the substitution s to P .

3 Pattern-mat
hing and parsing

Parsing and tree-to-tree 
orre
tion are related and we need to understand the

me
hanisms that lead to the tree dupli
ation in order to gain eÆ
ien
y.
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Fig. 2. Examples of mappings

3.1 Fa
tors of intera
tion

The �rst fa
tor is the synta
ti
 representation used. We represent a parse in �nite

shared form as the 
hain of the 
ontext-free rules used in a leftmost redu
tion of

the input senten
e [3℄. The resulting grammar is equivalent to an and-or graph,

whose and-nodes are the usual parse-tree nodes, while or-nodes are ambiguities.

Sharing of stru
tures is represented by nodes a

essed by more than one other

node and it may 
orrespond to sharing of a 
omplete tree, but also to sharing

of a part of the des
endants of a given node, as shown in Fig. 3.
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n1RULE       : γ1Φ α β δ ρ
n2RULE       : γ2Φ α β δ ρ

γ1 γ2

Φ

α β δ ρ α β δ ρ

Classic forest representation without sharing.

Shared nodes using a top-down parser, with AND-OR graphs.

Shared nodes using a bottom-up parser, with AND-OR graphs.

AND-OR representation with sharing,
for a top-down parsing.

n1

γ2 n2

γ1

nil

nil

nil

α β δ ρ

α β δ ρ

Φ

AND-OR representation with sharing,
for a bottom-up parsing.

γ2
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n2

n1

δ ρ

α β

α β

δ ρ

nil

nil

Φ nil

Fig. 3. How shared forests are built using an and-or formalism

Another fa
tor is the parsing s
heme applied. So, bottom-up parsing may

share only the rightmost 
onstituents, while top-down parsing may only share

the leftmost ones. This depends on the type of sear
h used to build the forest.

Breadth �rst sear
h results in bottom-up 
onstru
tions and depth �rst sear
h

results in top-down ones, as is also shown in Fig. 3. Here, one major observation

we noted is that Zhang et al. 
onsider a postorder traversal, 
omputing the forest

distan
e by left-re
ursion on this sear
h. So, we would need to 
onsider a top-

down parser to avoid redundant 
omputations. However, these parsers are not


omputationally eÆ
ient, and a bottom-up approa
h requires a rightmost sear
h

of tree 
onstituents. This implies rede�ning the original �nding strategy.



3.2 The forest edition distan
e

We introdu
e r(i) (resp. an
(i)) as the rightmost leaf des
endent of the subtree

rooted at T [i℄ (resp. the an
estors of T [i℄) in a tree T , and T [i::j℄ as the ordered

sub-forest of T indu
ed by the nodes numbered i to j, in
lusive, as is shown

in Fig. 1. In parti
ular, we have T [r(i)::i℄ as the tree rooted at T [i℄. We now

de�ne the forest edition distan
e between a target tree P and a data tree D, as

a generalization of Æ, in the form

f d(P [s

1

::s

2

℄; D[t

1

::t

2

℄) = Æ(P [s

1

::s

2

℄; D[t

1

::t

2

℄)

that we denote f d(s

1

::s

2

; t

1

::t

2

) when the 
ontext is 
lear. Intuitively, this


on
ept 
omputes the distan
e between two nodes, P [s

2

℄ and D[t

2

℄, in the


ontext of their left siblings in the 
orresponding trees, while the tree distan
e,

Æ(P [s

2

℄; D[t

2

℄), is 
omputed only from their des
endants. To be pre
ise, we 
an


ompute the editing distan
e t d(P;D) applying the formulae that follow, for

nodes i 2 an
(s) and j 2 an
(t), assuming P [s℄ is not an in
omplete stru
ture:

f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

min

8

>

<

>

:

f d(r(i)::s� 1; r(j)::t) + 
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + 
("! D[t℄);

f d(r(i)::s� 1;

r(j)::t � 1) + 
(P [s℄! D[t℄)

9

>

=

>

;

i� r(s) = r(i) and r(t) = r(j)

min

(

f d(r(i)::s� 1; r(j)::t) + 
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + 
("! D[t℄);

f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

When P [s℄ 2 fj;^g, formulae must be adapted, we �rst assume P [s℄ is \j":

f d(r(i)::s; r(j)::t) = min

8

>

>

>

>

>

<

>

>

>

>

>

:

f d(r(i)::s� 1; r(j)::t) + 
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + 
("! D[t℄);

f d(r(i)::s� 1; r(j)::t � 1) + 
(P [s℄! D[t℄);

f d(�;D[r(j)℄::t � 1) + min

t

k

ft d(s; t

k

)

� t d(�; t

k

)g;

1 � k � n

t

9

>

>

>

>

>

=

>

>

>

>

>

;

For the 
ase where P [s℄ is \^", the formulae are the following:

f d(r(i)::s; r(j)::t) = min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(j)::t) + 
(P [s℄! ");

f d(r(i)::s; r(j)::t� 1) + 
("! D[t℄);

f d(r(i)::s� 1; r(j)::t� 1) + 
(P [s℄! D[t℄);

min

t

k

ft d(s; t

k

)g; 1 � k � n

t

;

min

t

k

fs f d(r(i)::s� 1; r(j)::t

k

)g; 1 � k � n

t

9

>

>

>

=

>

>

>

;

where D[t

k

℄; 1 � k � n

t

, are 
hildren of D[t℄. If D[t℄ is a leaf, that is t = r(j),

then only the �rst three expressions are present. We de�ne the suÆx forest

distan
e between F

P

and F

D

, forests in the pattern P and the data tree D

respe
tively, as s f d(F

P

; F

D

) = min

�

F

D

ff d(F

P

;

�

F

D

)g, where

�

F

D

is a sub-forest



of F

D

with some 
onse
utive 
omplete subtrees removed from the left, all of

them having the same parent. From a 
omputational point of view, it 
an be

proved that

s f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

min

�

f d(r(i)::s; �);

f d(r(i)::s; r(j)::t)

�

i� r(t) = r(j)

min

(

s f d(r(i)::s� 1; r(j)::t) + 
(P [s℄! ");

s f d(r(i)::s; r(j)::t � 1) + 
("! D[

^

t℄);

s f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

To 
ompute t d(P;D) it is suÆ
ient to take into a

ount that t d(P;D) =

f d(root(P )::r(root(P )); root(D)::r(root(D))). Time bound is O(j P jj D j

min(depth(P ); leaves(P ))min(depth(D); leaves(D))) in the worst 
ase, where

j T j is the number of nodes in a tree T . We talk about elementary operations

to refer to ea
h one of these minimum values 
omputed.

4 Pattern-mat
hing and shared forest

Let P be a labeled ordered tree where some stru
tural details have been omitted,

and D an and-or graph. We identify P with a query and D with a part of

the synta
ti
 representation for a database with a 
ertain degree of ambiguity.

Let P [s℄ be the 
urrent node in the inverse postorder for P , and i 2 an
(s) a

r keyroot. Given an or-node D[k℄ we 
an distinguish two situations, depending

on the situation of this or-node and the situation of the r keyroots of D.

4.1 Sharing into a same r keyroot

Let D[t

0

℄ and D[t

00

℄ be the nodes we are dealing with in parallel for two

bran
hes labeled D[k

0

℄ and D[k

00

℄ of the or-node r(D[k℄). We have that j 2

an
(t

0

) \ an
(t

00

), that is, the tree rooted at the r keyroot D[j℄ in
ludes the or

alternativesD[k

0

℄ andD[k

00

℄. Su
h a situation is shown in Fig. 4. Here, the lightly

shaded part refers to nodes whose distan
e has been 
omputed in the inverse

postorder before the or-node D[k℄. The heavily shaded part represents a shared

stru
ture. The notation \� � �" expresses the fa
t that we des
end along the

rightmost bran
h of the 
orresponding tree.

We assume that nodes D[r(t

0

) � 1℄ and D[r(t

00

) � 1℄ are the same, that

is, their 
orresponding subtrees are shared. So, D[r(t

0

)℄ (resp. D[r(t

00

)℄) is the

following node in D[k

0

℄ (resp. D[k

00

℄) to deal with on
e the distan
e for the

shared stru
ture has been 
omputed. Our aim is to 
ompute the value for

f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g, proving that we 
an translate parse sharing

to sharing in 
omputations for these distan
es. Sin
e we have assumed there is a

shared stru
ture between D[r(

^

t)℄ and D[r(j)℄, we 
on
lude that r(j) 6= r(

^

t) and

the values for f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g are given by:



f d(r(i)::s; r(j)::

^

t) = min

8

<

:

f d(r(i)::s� 1; r(j)::

^

t) + 
(P [s℄! ");

f d(r(i)::s; r(j)::

^

t� 1) + 
("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(j)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

where

^

t 2 ft

0

; t

00

g. We 
an interpret these three alternatives as follows:

1. The values for f d(r(i)::s�1; r(j)::

^

t);

^

t 2 ft

0

; t

00

g have been 
omputed by the

approximate mat
hing algorithm in a previous step. So, in this 
ase, parse

sharing has no 
onsequen
es for the natural 
omputation of the distan
es.

2. Two 
ases are possible in relation to the nature of nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g:

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

)�1℄ = D[r(t

00

)�1℄ = D[t

00

�1℄, and the values f d(r(i)::s; r(j)::

^

t�

1);

^

t 2 ft

0

; t

00

g are also the same.

{ Otherwise, following the inverse postorder, we would arrive at the

rightmost leaves of D[t

0

℄ and D[t

00

℄, where we 
ould apply the reasoning


onsidered in the previous 
ase.

3. Values for the distan
es f d(r(s)::r(i) � 1; r(j)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

identi
al, given that nodes D[r(

^

t)� 1℄;

^

t 2 ft

0

; t

00

g are shared by the parser.
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 . . . .

. . . nil

. .
 .☞ 

☞ 

D[k’]
nil

D[j ]

D[r(j )]

D[k]

D[k’’]

D[t’’] D[t’]

D[r(t’)−1]

D[r(k’’)]
D[r(k’)]

D[r(t’’)−1]

Fig. 4. Sharing into a same r keyroot

A similar reasoning 
an be applied to 
omputing the values for s f d, avoiding

redundant 
omputations.

4.2 Sharing between di�erent r keyroots

We have that j

0

2 an
(t

0

) and j

00

2 an
(t

00

), with j

0

6= j

00

, are two r keyroots,

with an or node D[k℄ being a 
ommon an
estor of these two nodes. We suppose

that the r keyroots are in di�erent bran
hes, namely, there exists a r keyroot,

D[j

0

℄ (resp. D[j

00

℄), in the bran
h labeled D[k

0

℄ (resp. D[k

00

℄).

Our aim is to 
ompute the value for distan
es f d(r(i)::s; r(̂�)::

^

t), where pairs

(̂�;

^

t) are in f(j

0

; t

0

); (j

00

; t

00

)g. Formally, we have that these values are given by:
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^
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>

>

>

>

>

>
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>

>

>

>
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:

min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(̂�)::

^

t) + 
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + 
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + 
(P [s℄! D[

^

t℄);

f d(�;D[r(̂�)℄::

^

t� 1) + min

^

t

k

ft d(s;

^

t

k

) �

t d(�;

^

t

k

)g 1 � k � n

^

t

9

>

>

>

=

>

>

>

;

i� P [s℄ =j

min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(̂�)::

^

t) + 
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + 
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + 
(P [s℄! D[

^

t℄);

min

^

t

k

ft d(s;

^

t

k

); 1 � k � n

^

t

;

min

^

t

k

fs f d(r(i)::s� 1; r(̂�)::

^

t

k

); 1 � k � n

^

t

9

>

>

>

=

>

>

>

;

i� P [s℄ = ^

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) + 
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + 
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + 
(P [s℄! D[

^

t℄)

9

=

;

otherwise

i� r(s) = r(i) and r(

^

t) = r(̂�)

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) + 
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + 
("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(̂�)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

otherwise

The situation, shown in the �rst 
ase of Fig. 5, makes possible r(s) = r(i)

and r(

^

t) = r(̂�). We 
an assume that a tail of sons is shared by nodes

D[

^

t℄;

^

t 2 ft

0

; t

00

g, as well as that this tail is proper given that, otherwise, our

parser guarantees that the nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g are also shared. Taking into

a

ount that we identify synta
ti
 stru
tures and 
omputations, we 
on
lude that

the distan
es f d(r(i)::s; r(̂�)::

^

t), with (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g do not depend

on previous 
omputations over the shared tail. This sharing has no e�e
t on the


omputation, although it does a�e
t the 
omputation of distan
es for nodes in

the rightmost bran
h of the tree immediately to the left of the shared tail of

sons, denoted by a double dotted line in the se
ond 
ase of Fig. 5.

The 
omputation of the forest distan
e when r(

^

t) 6= r(̂�), is shown in the

se
ond 
ase of Fig. 5. In relation to ea
h one of the three alternative values used

to 
ompute the minimum, we have that:

1. The values for f d(r(i)::s � 1; r(̂�)::

^

t); (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g have been


omputed by the approximate mat
hing algorithm in a previous step and

parse sharing does not a�e
t the 
omputation for distan
es.

2. We distinguish two 
ases in relation to the nature of nodes D[

^

t℄;

^

t 2 f(t

0

; t

00

):

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

) � 1℄ = D[r(t

00

) � 1℄ = D[t

00

� 1℄, and therefore the values for



distan
es f d(r(i)::s; r(̂�)::

^

t� 1) with (̂�;

^

t);2 f(j

0

; t

0

); (j

00

; t

00

)g, are also

the same.

{ Otherwise, following the inverse postorder, we arrive at the rightmost

leaves of D[t

0

℄ and D[t

00

℄, where we 
an apply the reasoning 
onsidered

in the previous 
ase.

3. Values for the distan
es f d(r(i)::r(s) � 1; r(

^

t)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

identi
al, given that the trees rooted by nodes D[r(

^

t) � 1℄;

^

t 2 ft

0

; t

00

g are

shared by the parser.

As in the 
ase of sharing in a same r keyroot, a similar reasoning 
an be applied

to 
ompute the values for s f d, avoiding redundant 
omputations.

5 Experimental results

To deal with approximate pattern-mat
hing as a query fa
ility, we are interested

in both 
onsidering the point of view of the user, whi
h determines the 
hoi
e

of one or other vld
 symbol, and in showing the in
uen
e of this 
hoi
e on

the overall 
omputational 
ost. We also estimate the impa
t of sharing on the

pro
ess des
ribed. This is of interest, be
ause user queries 
an vary widely from

the norm. Thus, the goal is to �nd a pattern whi
h most 
losely mat
hes the

user query. Ambiguity arises, sin
e this query 
an be 
onsidered to be a distorted

version of any of several possible patterns. So, sharing saves on the spa
e needed

to represent these stru
tures, and also on their later pro
essing.
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Fig. 5. Sharing between di�erent r keyroots

In order to interpret the pra
ti
al results, we need a formal environment. So,

we de�ne a set of properties whi
h are of interest in an approximate pattern-

mat
hing algorithm. The �rst property is the abstra
tion, a ratio between the

number of nodes parti
ipating in the substitutions of vld
 symbols related to

the total number of nodes in the data tree. Intuitively, the abstra
tion measures

the entity of the regions 
overed by vld
 symbols. If we 
onsider that greater



levels of abstra
tion in the query means a smaller e�ort of the user to express

it, we have a simple 
riterion to re
e
t this e�ort.

The se
ond property is the e�ort, the number of elementary operations

applied, whi
h measures the 
omputational e�ort. The third property is the

performan
e, de�ned as the ratio between the number of the vld
 operations


ontributing to the �nal distan
e, and the total number of vld
 operations

a
tually 
omputed. This allows us to estimate the a
tual exploitation of the


omputations involving vld
 symbols. Finally, to measure the quality of the

pattern-mat
hing pro
ess, we 
onsider the ratio between the distan
e obtained

by the algorithm and the number of nodes in the data tree. To perform the tests,

we have 
onsidered shared forest obtained from the parsing of senten
es of the

form "John gives the 
ake to (the friend of)

i

Mary", for value of i = 7, using

the following non-deterministi
 grammar of English:

(1) S ! NP VP (5) NP ! det noun PP

(2) VP ! verb NP PP (6) NP ! det noun PP PP

(3) NP ! noun (7) PP ! prep NP

(4) NP ! det noun

Given that the grammar 
ontains a rule \NP ! det noun PP PP", these

senten
es have a number of ambiguous parses whi
h grows exponentially with i.

This allow us to evaluate our proposal in a strongly ambiguous 
ontext, in spite

of the simpli
ity of the grammar. As patterns, we have used a set of deterministi


parse trees. To start with, we have 
onsidered a deterministi
 parse tree for the

senten
e "John gives the 
ake to (the friend of)

5

Mary". We then generate new

pattern trees by means of the in
lusion of vld
 nodes in su
h a way that the

vagueness of the resulting patterns in
reases, as shown in Fig. 6. To show the

di�eren
e between the vld
 symbols, we have 
onsidered two di�erent sets of

patterns, one in
luding only "^" symbols and another with only "j" symbols.
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Fig. 6. Pattern trees, 
lassi
 and and-or graph, used in our tests

The experimental results are shown in Figs. 7, 8 and 9. In all 
ases, we

represent the level of abstra
tion in the patterns used on the X-axis. As expe
ted,



abstra
tion values in
rease as long as the pattern tree in
ludes more vld


symbols. It should also be noti
ed that the abstra
tion we get with patterns

using only \j" vld
 is mu
h more redu
ed than in patterns that in
lude \^"

nodes. This a 
onsequen
e of the kind of vld
 substitutions performed in the \j"

nodes, that in
ludes only a sub-path of nodes, but not 
omplete subtrees. All

tests illustrated re
e
t eviden
e an important redu
tion in the 
omputational


ost due to stru
tural sharing.
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Fig. 7. Tests on e�ort

In Fig. 7, we show the e�ort values obtained for di�erent patterns with an

in
reasing degree of abstra
tion. In our example, the tests show a redu
tion in

the e�ort when the abstra
tion in
reases. This is due to the fa
t that patterns

with a greater abstra
tion have fewer nodes than more pre
ise ones. In the


ase of patterns with only \j" vld
 symbols, the e�ort is smaller, be
ause the

algorithm does not need to 
ompute the s f d values. As a 
onsequen
e, the use

of \^" symbols always in
reases the e�ort, with approximately twi
e the number

of elementary operations being needed to 
ompute the �nal distan
e. From an

intuitive point of view, these results indi
ate that the 
omputational e�ort is in

inverse 
orresponden
e to the des
ription e�ort applied by the user to express

the query, whi
h seems natural.

In Fig 8, we 
an see that the highest performan
e is given for patterns with

only \j" vld
 symbols. This behavior is again derived from the fa
t that in

those patterns there is no need to 
ompute s f d values. Although the number

of vld
 operations used may be less, the total number of vld
 
omputations

is mu
h smaller than in the 
ase of \^" patterns, sin
e the algorithm does not

have to 
ompute s f d 's. Intuitively, this is due to the fa
t that vagueness in the

des
ription of the query favours the pattern-mat
hing pro
ess sin
e stru
tural


onstraints are relaxed.

Finally, in Fig. 9, we show the in
uen
e of the di�erent kinds of patterns on

the �nal distan
e obtained by the algorithm in our tests. The most interesting
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Fig. 8. Tests on performan
e

feature of these results is the behavior when the pattern has only \j" vld


symbols. In this 
ase, as the pattern gets less spe
i�
, so the distan
e in
reases.

The reason is that, when the \j" pattern be
omes more general, there are fewer

nodes spe
i�ed in the pattern, and, in the best mapping, it is ne
essary to

in
lude insert operations for those nodes. In patterns with \^" vld
 symbols,

the vld
 substitutions 
over these inserted nodes, making the distan
e zero.

From an intuitive point of view, this means that \j" patterns are more in
exible

than patterns with \^\, and more sensitive to the data tree topology. So, this


hara
teristi
 means that the behaviour of the \j\ substitutions must be taken

into a

ount when building patterns that in
lude this symbol
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6 Con
lusions

Pra
ti
al information retrieval/extra
tion systems often fo
uses on systems for

whi
h the priority is the re
all, to the detriment of pre
ision. This gap is justi�ed

by eÆ
ien
y gains assuming that if the system is too slow it will be intolerable

to use, regardless of its ability to identify relevant do
uments, whi
h may

degrade the performan
e seriously. In this sense, proposals based on approximate

pattern-mat
hing te
hnology allow to modulate both the 
omplexity in the query

des
ription and 
omputational e�ort, providing a valid starting point to estimate

the impa
t of these fa
tors in the quality of the answer.
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