
On Pattern-Mat
hing as Query Fa
ility

M. Vilares

1

, F.J. Ribadas

1

, and J. Gra~na

2

1

Department of Informati
s, University of Vigo

Campus As Lagoas s/n, 32004 Ourense, Spain

http://grupo
ole.org

2

Department of Computer S
ien
e, University of A Coru~na

Campus de Elvi~na s/n, 15071 A Coru~na, Spain

fvilares,granag�ud
.es, ribadas�uvigo.es

Abstra
t. Pattern-mat
hing
an be used to develop query languages for

information retrieval/extra
tion tasks. The operational basis is simple,

sin
e do
uments and queries
an be represented using the same kind

of stru
ture, do
uments or fragments that satisfy the query and whi
h

would be those that are
losest to its stru
tural representation. In

this sense, pattern-mat
hing makes it possible to
ombine a variety of

stru
tural
onstraints in
exible ways, allowing the query to be de�ned

approximately, or even omitting some stru
tural details.

Our goal is to analyze how the la
k of stru
tural information in queries

may degrade performan
e, and to illustrate the relation between the

omputational work and the e�ort applied by the user to des
ribe these

queries.

1 Introdu
tion

Representing do
uments and queries as stru
tures is a natural way to introdu
e

pattern-mat
hing as an operational model for a query language [2℄. In relation

to other approa
hes, this one provides the
exibility to a

ess di�erent views of

the database, sin
e it is not always evident how to do this using te
hniques based

on
lassi
 indexing methods. This
apa
ity
an be used to adapt a formal query

model to pra
ti
al user queries, in order to design query languages that are
loser

to natural ones, where the level of pre
ision is not easy, or even impossible, to

de�ne.

In the
ontext
onsidered, pattern-mat
hing
an be studied from two di�erent

points of view:
omparing stru
tures that
an only be approximately de�ned [7℄,

or introdu
ing variable length don't
are (vld
) te
hnology in order to omit

stru
tural details [8℄. In the �rst
ase, pattern-mat
hing
an be applied to deal

with queries that
an only be approximately de�ned, whi
h often o

urs. In

the se
ond
ase, the te
hnique
an be applied to deal with la
k of information

in queries, either be
ause it is unavailable to the user, or simply be
ause

the user wants to redu
e his own workload. Both strategies
an
orrespond

to
omplementary phases in the de�nition of a query
onsidering intera
tive

expansion [1℄ and, from the point of view of the user, they make it possible to

ontrol the level of detail in the retrieval/extra
tion pro
ess [6℄. Whatever the

hoi
e, it impa
ts on both system performan
e and implementation te
hniques.

A subje
t of additional interest is the exploitation of sharing between target

stru
tures with
ommon nodes, whi
h may lead to an in
rease in
omputational

eÆ
ien
y in approximate pattern-mat
hing [4, 5℄. In e�e
t, although in the
ase

of the query language ambiguity
ould probably be eliminated, impre
ision in

the language intended to represent the do
ument produ
es ambiguity. Sin
e

it is desirable to
onsider all possible interpretations for semanti
 pro
essing,

it is
onvenient to merge stru
tures as mu
h as possible, sharing
ommon

parts. This
ould be applied to a variety of problems, su
h as natural language

pro
essing, where ambiguity and stru
tural sharing are
ommon [3℄. Another
ase

is mole
ular evolution, with many examples indi
ating that gene dupli
ation with

fusion has o

urred extensively in the past. This provides an as yet unexplored

route to the evolution of new fun
tions from existing proteins.

Our aim in this paper is to look for both theoreti
al foundations and pra
ti
al

onstraints in the existing relationship between stru
tural and
omputational

omplexity in dealing with query languages based on pattern-mat
hing, and to

fo
us on the treatment of stru
tural sharing. In this way, we hope to bring to

light some of the fa
tors governing the me
hanisms behind the pra
ti
e, and

their impa
t on
osts from the user's
hoi
es in query pro
essing.

2 The editing distan
e

Given P , a pattern tree, and D, a data tree, we de�ne an edit operation as a

pair a ! b; a 2 labels(P) [f"g; b 2 labels(D) [f"g; (a; b) 6= ("; "), where

" represents the empty string. We
an delete a node (a ! "), insert a node

(" ! b), and
hange a node (a ! b). Ea
h edit operation has a
ost,
(a ! b),

that we extend to a sequen
e S of edit operations s

1

; s

2

; : : : ; s

n

in the form

(S) =

P

jSj

i=1

(
(s

i

)). The distan
e between P and D is de�ned by the metri
:

Æ(P;D) = minf
(S); S editing sequen
e taking P to Dg

Given an inverse postorder traversal, as is shown in Fig. 1, to name ea
h node i

of a tree T by T [i℄, a mapping from P to D is a triple (M;P;D), whereM is a set

of integer pairs (i; j) satisfying, for ea
h 1 � i

1

; i

2

�j P j and 1 � j

1

; j

2

�j D j:

i

1

= i

2

i� j

1

= j

2

P [i

1

℄ is to the left of P [i

2

℄ i� D[j

1

℄ is to the left of D[j

2

℄

P [i

1

℄ is an an
estor of P [i

2

℄ i� D[j

1

℄ is an an
estor of D[j

2

℄

whi
h
orresponds to one-to-one assignation, sibling order preservation and

an
estor order preservation. The
ost,
(M), of a mapping (M;P;D) is
omputed

from relabeling, deleting and inserting operations, as follows:

(M) =

X

(i;j)2M

(P [i℄! D[j℄) +

X

i2D

(P [i℄! ") +

X

j2I

("! D[j℄)

where D and I are, respe
tively, the nodes in P and D not tou
hed by any line

in M . Tai proves, given trees P and D, that

Æ(P;D) = minf
(M); M mapping from P to Dg

whi
h allows us to fo
us on edit sequen
es whi
h are a mapping. We show

in Fig. 2 one example of mapping between two trees, and a sequen
e of edit

operations whi
h do not
onstitute a mapping. We also introdu
e r keyroots(T)

as the set of all nodes in a tree T whi
h have a right sibling plus the root, root(T),

of T . We pro
eed through the nodes, �rst determining mappings from all leaf

r keyroots, then all r keyroots at the next higher level, and so on to the root. The

set of r keyroots(T) is indi
ated by arrows in Fig. 1. In dealing with approximate

vld
 pattern-mat
hing, di�erent strategies are then appli
able. Following Zhang

et al. in [8℄, we introdu
e two di�erent de�nitions for vld
 mat
hing:

{ The vld
 substitutes part of a path from the root to a leaf of the data tree.

We represent su
h a substitution, shown in Fig. 2, by a verti
al bar "j", and

all it a path-vld
.

{ The vld
 mat
hes part of su
h a path and all the subtrees emanating from

the nodes of that path, ex
ept possibly at the lowest node of that path. At

the lowest node, the vld
 symbol
an substitute a set of leftmost subtrees

and a set of rightmost subtrees. We
all this an umbrella-vld
, and represent

it by a
ir
um
ex \^", as shown in Fig. 2.

a

b c d

f g h i

j

9

e
8 3

1

10

4

2
5

6

7

j

d

h i

c

g

T[1..8]

e f d

h i

j

T[1..4]

Fig. 1. The forest distan
e using an inverse postorder numbering

We now
apture the use of vld
 symbols. Given a data tree D and a

substitution s on P , we rede�ne: Æ(P;D) = min

s2S

fÆ(P;D; s)g, where S is

the set of all possible vld
-substitutions, and Æ(P;D; s) is the distan
e Æ(

�

P ;D),

being

�

P the result of applying the substitution s to P .

3 Pattern-mat
hing and parsing

Parsing and tree-to-tree
orre
tion are related and we need to understand the

me
hanisms that lead to the tree dupli
ation in order to gain eÆ
ien
y.

a

b c d

e

f g

a

b c d

e

g

f

a

b c d

e

f g

a

b c d

e

g

f

a

b d

g

|

a

b c d

e

g

f

a

b c d

e

g

a

b c d

e

g

f

a

b d

g

^

a

b c d

e

g

f

Mapping without VLDC Mapping with a Path-VLDC Mapping with an Umbrella-VLDC

Correct Incorrect

Fig. 2. Examples of mappings

3.1 Fa
tors of intera
tion

The �rst fa
tor is the synta
ti
 representation used. We represent a parse in �nite

shared form as the
hain of the
ontext-free rules used in a leftmost redu
tion of

the input senten
e [3℄. The resulting grammar is equivalent to an and-or graph,

whose and-nodes are the usual parse-tree nodes, while or-nodes are ambiguities.

Sharing of stru
tures is represented by nodes a

essed by more than one other

node and it may
orrespond to sharing of a
omplete tree, but also to sharing

of a part of the des
endants of a given node, as shown in Fig. 3.

����
����
����
����

����
����
����

����
����
����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
��������������

�������
�������
�������
�������

�������
�������
�������
�������
�������

��
��
��
��

��
��
��
��

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

n1RULE : γ1Φ α β δ ρ
n2RULE : γ2Φ α β δ ρ

γ1 γ2

Φ

α β δ ρ α β δ ρ

Classic forest representation without sharing.

Shared nodes using a top-down parser, with AND-OR graphs.

Shared nodes using a bottom-up parser, with AND-OR graphs.

AND-OR representation with sharing,
for a top-down parsing.

n1

γ2 n2

γ1

nil

nil

nil

α β δ ρ

α β δ ρ

Φ

AND-OR representation with sharing,
for a bottom-up parsing.

γ2

γ1

n2

n1

δ ρ

α β

α β

δ ρ

nil

nil

Φ nil

Fig. 3. How shared forests are built using an and-or formalism

Another fa
tor is the parsing s
heme applied. So, bottom-up parsing may

share only the rightmost
onstituents, while top-down parsing may only share

the leftmost ones. This depends on the type of sear
h used to build the forest.

Breadth �rst sear
h results in bottom-up
onstru
tions and depth �rst sear
h

results in top-down ones, as is also shown in Fig. 3. Here, one major observation

we noted is that Zhang et al.
onsider a postorder traversal,
omputing the forest

distan
e by left-re
ursion on this sear
h. So, we would need to
onsider a top-

down parser to avoid redundant
omputations. However, these parsers are not

omputationally eÆ
ient, and a bottom-up approa
h requires a rightmost sear
h

of tree
onstituents. This implies rede�ning the original �nding strategy.

3.2 The forest edition distan
e

We introdu
e r(i) (resp. an
(i)) as the rightmost leaf des
endent of the subtree

rooted at T [i℄ (resp. the an
estors of T [i℄) in a tree T , and T [i::j℄ as the ordered

sub-forest of T indu
ed by the nodes numbered i to j, in
lusive, as is shown

in Fig. 1. In parti
ular, we have T [r(i)::i℄ as the tree rooted at T [i℄. We now

de�ne the forest edition distan
e between a target tree P and a data tree D, as

a generalization of Æ, in the form

f d(P [s

1

::s

2

℄; D[t

1

::t

2

℄) = Æ(P [s

1

::s

2

℄; D[t

1

::t

2

℄)

that we denote f d(s

1

::s

2

; t

1

::t

2

) when the
ontext is
lear. Intuitively, this

on
ept
omputes the distan
e between two nodes, P [s

2

℄ and D[t

2

℄, in the

ontext of their left siblings in the
orresponding trees, while the tree distan
e,

Æ(P [s

2

℄; D[t

2

℄), is
omputed only from their des
endants. To be pre
ise, we
an

ompute the editing distan
e t d(P;D) applying the formulae that follow, for

nodes i 2 an
(s) and j 2 an
(t), assuming P [s℄ is not an in
omplete stru
ture:

f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

min

8

>

<

>

:

f d(r(i)::s� 1; r(j)::t) +
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) +
("! D[t℄);

f d(r(i)::s� 1;

r(j)::t � 1) +
(P [s℄! D[t℄)

9

>

=

>

;

i� r(s) = r(i) and r(t) = r(j)

min

(

f d(r(i)::s� 1; r(j)::t) +
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) +
("! D[t℄);

f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

When P [s℄ 2 fj;^g, formulae must be adapted, we �rst assume P [s℄ is \j":

f d(r(i)::s; r(j)::t) = min

8

>

>

>

>

>

<

>

>

>

>

>

:

f d(r(i)::s� 1; r(j)::t) +
(P [s℄! ");

f d(r(i)::s; r(j)::t � 1) +
("! D[t℄);

f d(r(i)::s� 1; r(j)::t � 1) +
(P [s℄! D[t℄);

f d(�;D[r(j)℄::t � 1) + min

t

k

ft d(s; t

k

)

� t d(�; t

k

)g;

1 � k � n

t

9

>

>

>

>

>

=

>

>

>

>

>

;

For the
ase where P [s℄ is \^", the formulae are the following:

f d(r(i)::s; r(j)::t) = min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(j)::t) +
(P [s℄! ");

f d(r(i)::s; r(j)::t� 1) +
("! D[t℄);

f d(r(i)::s� 1; r(j)::t� 1) +
(P [s℄! D[t℄);

min

t

k

ft d(s; t

k

)g; 1 � k � n

t

;

min

t

k

fs f d(r(i)::s� 1; r(j)::t

k

)g; 1 � k � n

t

9

>

>

>

=

>

>

>

;

where D[t

k

℄; 1 � k � n

t

, are
hildren of D[t℄. If D[t℄ is a leaf, that is t = r(j),

then only the �rst three expressions are present. We de�ne the suÆx forest

distan
e between F

P

and F

D

, forests in the pattern P and the data tree D

respe
tively, as s f d(F

P

; F

D

) = min

�

F

D

ff d(F

P

;

�

F

D

)g, where

�

F

D

is a sub-forest

of F

D

with some
onse
utive
omplete subtrees removed from the left, all of

them having the same parent. From a
omputational point of view, it
an be

proved that

s f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

min

�

f d(r(i)::s; �);

f d(r(i)::s; r(j)::t)

�

i� r(t) = r(j)

min

(

s f d(r(i)::s� 1; r(j)::t) +
(P [s℄! ");

s f d(r(i)::s; r(j)::t � 1) +
("! D[

^

t℄);

s f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

To
ompute t d(P;D) it is suÆ
ient to take into a

ount that t d(P;D) =

f d(root(P)::r(root(P)); root(D)::r(root(D))). Time bound is O(j P jj D j

min(depth(P); leaves(P))min(depth(D); leaves(D))) in the worst
ase, where

j T j is the number of nodes in a tree T . We talk about elementary operations

to refer to ea
h one of these minimum values
omputed.

4 Pattern-mat
hing and shared forest

Let P be a labeled ordered tree where some stru
tural details have been omitted,

and D an and-or graph. We identify P with a query and D with a part of

the synta
ti
 representation for a database with a
ertain degree of ambiguity.

Let P [s℄ be the
urrent node in the inverse postorder for P , and i 2 an
(s) a

r keyroot. Given an or-node D[k℄ we
an distinguish two situations, depending

on the situation of this or-node and the situation of the r keyroots of D.

4.1 Sharing into a same r keyroot

Let D[t

0

℄ and D[t

00

℄ be the nodes we are dealing with in parallel for two

bran
hes labeled D[k

0

℄ and D[k

00

℄ of the or-node r(D[k℄). We have that j 2

an
(t

0

) \ an
(t

00

), that is, the tree rooted at the r keyroot D[j℄ in
ludes the or

alternativesD[k

0

℄ andD[k

00

℄. Su
h a situation is shown in Fig. 4. Here, the lightly

shaded part refers to nodes whose distan
e has been
omputed in the inverse

postorder before the or-node D[k℄. The heavily shaded part represents a shared

stru
ture. The notation \� � �" expresses the fa
t that we des
end along the

rightmost bran
h of the
orresponding tree.

We assume that nodes D[r(t

0

) � 1℄ and D[r(t

00

) � 1℄ are the same, that

is, their
orresponding subtrees are shared. So, D[r(t

0

)℄ (resp. D[r(t

00

)℄) is the

following node in D[k

0

℄ (resp. D[k

00

℄) to deal with on
e the distan
e for the

shared stru
ture has been
omputed. Our aim is to
ompute the value for

f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g, proving that we
an translate parse sharing

to sharing in
omputations for these distan
es. Sin
e we have assumed there is a

shared stru
ture between D[r(

^

t)℄ and D[r(j)℄, we
on
lude that r(j) 6= r(

^

t) and

the values for f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g are given by:

f d(r(i)::s; r(j)::

^

t) = min

8

<

:

f d(r(i)::s� 1; r(j)::

^

t) +
(P [s℄! ");

f d(r(i)::s; r(j)::

^

t� 1) +
("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(j)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

where

^

t 2 ft

0

; t

00

g. We
an interpret these three alternatives as follows:

1. The values for f d(r(i)::s�1; r(j)::

^

t);

^

t 2 ft

0

; t

00

g have been
omputed by the

approximate mat
hing algorithm in a previous step. So, in this
ase, parse

sharing has no
onsequen
es for the natural
omputation of the distan
es.

2. Two
ases are possible in relation to the nature of nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g:

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

)�1℄ = D[r(t

00

)�1℄ = D[t

00

�1℄, and the values f d(r(i)::s; r(j)::

^

t�

1);

^

t 2 ft

0

; t

00

g are also the same.

{ Otherwise, following the inverse postorder, we would arrive at the

rightmost leaves of D[t

0

℄ and D[t

00

℄, where we
ould apply the reasoning

onsidered in the previous
ase.

3. Values for the distan
es f d(r(s)::r(i) � 1; r(j)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

identi
al, given that nodes D[r(

^

t)� 1℄;

^

t 2 ft

0

; t

00

g are shared by the parser.

.

. .
 .

. .
 .

. .
 .

. nil

. .
 .

. nil

. .
 .

nil. . .

. .
 .

. .
 .

. .
 .

. . .

. . . nil

. .

. . . nil

. .

. . . nil

. .
 .

. . .

. . . nil

. .
 .

. . .

nil. . .

. .
 .

. .
 .

. .
 .

. . .

. . . nil

. .

. . . nil

. .
 .☞

☞

D[k’]
nil

D[j]

D[r(j)]

D[k]

D[k’’]

D[t’’] D[t’]

D[r(t’)−1]

D[r(k’’)]
D[r(k’)]

D[r(t’’)−1]

Fig. 4. Sharing into a same r keyroot

A similar reasoning
an be applied to
omputing the values for s f d, avoiding

redundant
omputations.

4.2 Sharing between di�erent r keyroots

We have that j

0

2 an
(t

0

) and j

00

2 an
(t

00

), with j

0

6= j

00

, are two r keyroots,

with an or node D[k℄ being a
ommon an
estor of these two nodes. We suppose

that the r keyroots are in di�erent bran
hes, namely, there exists a r keyroot,

D[j

0

℄ (resp. D[j

00

℄), in the bran
h labeled D[k

0

℄ (resp. D[k

00

℄).

Our aim is to
ompute the value for distan
es f d(r(i)::s; r(̂�)::

^

t), where pairs

(̂�;

^

t) are in f(j

0

; t

0

); (j

00

; t

00

)g. Formally, we have that these values are given by:

f d(r(i)::s; r(̂�)::

^

t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(̂�)::

^

t) +
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) +
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) +
(P [s℄! D[

^

t℄);

f d(�;D[r(̂�)℄::

^

t� 1) + min

^

t

k

ft d(s;

^

t

k

) �

t d(�;

^

t

k

)g 1 � k � n

^

t

9

>

>

>

=

>

>

>

;

i� P [s℄ =j

min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(̂�)::

^

t) +
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) +
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) +
(P [s℄! D[

^

t℄);

min

^

t

k

ft d(s;

^

t

k

); 1 � k � n

^

t

;

min

^

t

k

fs f d(r(i)::s� 1; r(̂�)::

^

t

k

); 1 � k � n

^

t

9

>

>

>

=

>

>

>

;

i� P [s℄ = ^

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) +
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) +
("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) +
(P [s℄! D[

^

t℄)

9

=

;

otherwise

i� r(s) = r(i) and r(

^

t) = r(̂�)

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) +
(P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) +
("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(̂�)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

otherwise

The situation, shown in the �rst
ase of Fig. 5, makes possible r(s) = r(i)

and r(

^

t) = r(̂�). We
an assume that a tail of sons is shared by nodes

D[

^

t℄;

^

t 2 ft

0

; t

00

g, as well as that this tail is proper given that, otherwise, our

parser guarantees that the nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g are also shared. Taking into

a

ount that we identify synta
ti
 stru
tures and
omputations, we
on
lude that

the distan
es f d(r(i)::s; r(̂�)::

^

t), with (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g do not depend

on previous
omputations over the shared tail. This sharing has no e�e
t on the

omputation, although it does a�e
t the
omputation of distan
es for nodes in

the rightmost bran
h of the tree immediately to the left of the shared tail of

sons, denoted by a double dotted line in the se
ond
ase of Fig. 5.

The
omputation of the forest distan
e when r(

^

t) 6= r(̂�), is shown in the

se
ond
ase of Fig. 5. In relation to ea
h one of the three alternative values used

to
ompute the minimum, we have that:

1. The values for f d(r(i)::s � 1; r(̂�)::

^

t); (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g have been

omputed by the approximate mat
hing algorithm in a previous step and

parse sharing does not a�e
t the
omputation for distan
es.

2. We distinguish two
ases in relation to the nature of nodes D[

^

t℄;

^

t 2 f(t

0

; t

00

):

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

) � 1℄ = D[r(t

00

) � 1℄ = D[t

00

� 1℄, and therefore the values for

distan
es f d(r(i)::s; r(̂�)::

^

t� 1) with (̂�;

^

t);2 f(j

0

; t

0

); (j

00

; t

00

)g, are also

the same.

{ Otherwise, following the inverse postorder, we arrive at the rightmost

leaves of D[t

0

℄ and D[t

00

℄, where we
an apply the reasoning
onsidered

in the previous
ase.

3. Values for the distan
es f d(r(i)::r(s) � 1; r(

^

t)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

identi
al, given that the trees rooted by nodes D[r(

^

t) � 1℄;

^

t 2 ft

0

; t

00

g are

shared by the parser.

As in the
ase of sharing in a same r keyroot, a similar reasoning
an be applied

to
ompute the values for s f d, avoiding redundant
omputations.

5 Experimental results

To deal with approximate pattern-mat
hing as a query fa
ility, we are interested

in both
onsidering the point of view of the user, whi
h determines the
hoi
e

of one or other vld
 symbol, and in showing the in
uen
e of this
hoi
e on

the overall
omputational
ost. We also estimate the impa
t of sharing on the

pro
ess des
ribed. This is of interest, be
ause user queries
an vary widely from

the norm. Thus, the goal is to �nd a pattern whi
h most
losely mat
hes the

user query. Ambiguity arises, sin
e this query
an be
onsidered to be a distorted

version of any of several possible patterns. So, sharing saves on the spa
e needed

to represent these stru
tures, and also on their later pro
essing.

☞

☞

. .
 .

.

. .
 .

. . .

. .
 .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. . .

. .

. . .

. .
 .

. . .

nil

. . .
. . .

. .
 .

. . .

. .

. . .

. .
 .

. . .

. .
 .

.

. .
 .

. . .

. .
 .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

nil

nil nil

nil

nil

nil

nil

nil

nil

nil

nil

nil

nil
D[k’’]

D[k]

D[k’]

D[r(t’’)−1]

D[t’’]

D[r(t’)−1]

D[t’]

D[r(j’)]
D[r(j’’)]

D[j’’]

D[j’]

nil

☞

☞

. .
 .

. nil

. .
 .

. . .

. .
 .

. .
 .

. . .
nil

. . .

. .
 .

. .
 .

nil

. . .

. . . nil

. .

. . . nil

. .

.

. .
 .

. .
 .

nil

. .
 .

nil

. nil

. .

. . .

. .
 .

. .
 .

. nil

. .
 .

. . .

. .
 .

. .
 .

. . .
nil

. . .

. .
 .

.

. .
 .

. .
 .

nil

. . . nil

. .

. . . nil

. .

nil

D[r(t’)]
D[r(j’’)]=D[r(t’’)]
D[r(j’)]=

D[t ’]

D[k]

D[k’]

D[t’’]

D[k’’]

D[j’’]

D[j’]

(first case) (second case)

Fig. 5. Sharing between di�erent r keyroots

In order to interpret the pra
ti
al results, we need a formal environment. So,

we de�ne a set of properties whi
h are of interest in an approximate pattern-

mat
hing algorithm. The �rst property is the abstra
tion, a ratio between the

number of nodes parti
ipating in the substitutions of vld
 symbols related to

the total number of nodes in the data tree. Intuitively, the abstra
tion measures

the entity of the regions
overed by vld
 symbols. If we
onsider that greater

levels of abstra
tion in the query means a smaller e�ort of the user to express

it, we have a simple
riterion to re
e
t this e�ort.

The se
ond property is the e�ort, the number of elementary operations

applied, whi
h measures the
omputational e�ort. The third property is the

performan
e, de�ned as the ratio between the number of the vld
 operations

ontributing to the �nal distan
e, and the total number of vld
 operations

a
tually
omputed. This allows us to estimate the a
tual exploitation of the

omputations involving vld
 symbols. Finally, to measure the quality of the

pattern-mat
hing pro
ess, we
onsider the ratio between the distan
e obtained

by the algorithm and the number of nodes in the data tree. To perform the tests,

we have
onsidered shared forest obtained from the parsing of senten
es of the

form "John gives the
ake to (the friend of)

i

Mary", for value of i = 7, using

the following non-deterministi
 grammar of English:

(1) S ! NP VP (5) NP ! det noun PP

(2) VP ! verb NP PP (6) NP ! det noun PP PP

(3) NP ! noun (7) PP ! prep NP

(4) NP ! det noun

Given that the grammar
ontains a rule \NP ! det noun PP PP", these

senten
es have a number of ambiguous parses whi
h grows exponentially with i.

This allow us to evaluate our proposal in a strongly ambiguous
ontext, in spite

of the simpli
ity of the grammar. As patterns, we have used a set of deterministi

parse trees. To start with, we have
onsidered a deterministi
 parse tree for the

senten
e "John gives the
ake to (the friend of)

5

Mary". We then generate new

pattern trees by means of the in
lusion of vld
 nodes in su
h a way that the

vagueness of the resulting patterns in
reases, as shown in Fig. 6. To show the

di�eren
e between the vld
 symbols, we have
onsidered two di�erent sets of

patterns, one in
luding only "^" symbols and another with only "j" symbols.

nil

nil
nil

Noun

friend

^
^ |

|

nil

nil

NP

Noun

Mary

nil

nil

nil

nil nil

nil

nil

NP

Noun

John

nil nil

nil

nil

nil

^ |

|^

John gives

the cake to

(5 − k) times

k times (k= 0 .. 5)

S
nil

VP

Verb

gives

nil

PPNP

Noun

cake

nil

Det

the

Prep

to
NP

Det

the

Noun PP

Prep

of

friend

friend

S

VPNP

NP PPNoun

NP

the friend

PP

of

NP

Mary

Verb

Det

Det Noun

Noun Prep

Prep

Noun

Noun

(5 − k) times

k times (k= 0 .. 5)

Fig. 6. Pattern trees,
lassi
 and and-or graph, used in our tests

The experimental results are shown in Figs. 7, 8 and 9. In all
ases, we

represent the level of abstra
tion in the patterns used on the X-axis. As expe
ted,

abstra
tion values in
rease as long as the pattern tree in
ludes more vld

symbols. It should also be noti
ed that the abstra
tion we get with patterns

using only \j" vld
 is mu
h more redu
ed than in patterns that in
lude \^"

nodes. This a
onsequen
e of the kind of vld
 substitutions performed in the \j"

nodes, that in
ludes only a sub-path of nodes, but not
omplete subtrees. All

tests illustrated re
e
t eviden
e an important redu
tion in the
omputational

ost due to stru
tural sharing.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ff

o
rt

 (
n

u
m

b
e

r
o

f
e

le
m

e
n

ta
ry

 o
p

e
ra

ti
o

n
s
)

Abstraction (VLDC nodes / data tree nodes)

Umbrella with sharing
Umbrella without sharing

Path with sharing
Path without sharing

Fig. 7. Tests on e�ort

In Fig. 7, we show the e�ort values obtained for di�erent patterns with an

in
reasing degree of abstra
tion. In our example, the tests show a redu
tion in

the e�ort when the abstra
tion in
reases. This is due to the fa
t that patterns

with a greater abstra
tion have fewer nodes than more pre
ise ones. In the

ase of patterns with only \j" vld
 symbols, the e�ort is smaller, be
ause the

algorithm does not need to
ompute the s f d values. As a
onsequen
e, the use

of \^" symbols always in
reases the e�ort, with approximately twi
e the number

of elementary operations being needed to
ompute the �nal distan
e. From an

intuitive point of view, these results indi
ate that the
omputational e�ort is in

inverse
orresponden
e to the des
ription e�ort applied by the user to express

the query, whi
h seems natural.

In Fig 8, we
an see that the highest performan
e is given for patterns with

only \j" vld
 symbols. This behavior is again derived from the fa
t that in

those patterns there is no need to
ompute s f d values. Although the number

of vld
 operations used may be less, the total number of vld

omputations

is mu
h smaller than in the
ase of \^" patterns, sin
e the algorithm does not

have to
ompute s f d 's. Intuitively, this is due to the fa
t that vagueness in the

des
ription of the query favours the pattern-mat
hing pro
ess sin
e stru
tural

onstraints are relaxed.

Finally, in Fig. 9, we show the in
uen
e of the di�erent kinds of patterns on

the �nal distan
e obtained by the algorithm in our tests. The most interesting

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

 0.00022

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 P
e

rf
o

rm
a

n
c
e

 (
u

s
e

d
 V

L
D

C
 /

 c
o

m
p

u
te

d
 V

L
D

C
)

 Abstraction (VLDC nodes / data tree nodes)

Umbrella with sharing
Umbrella without sharing

Path with sharing
Path without sharing

Fig. 8. Tests on performan
e

feature of these results is the behavior when the pattern has only \j" vld

symbols. In this
ase, as the pattern gets less spe
i�
, so the distan
e in
reases.

The reason is that, when the \j" pattern be
omes more general, there are fewer

nodes spe
i�ed in the pattern, and, in the best mapping, it is ne
essary to

in
lude insert operations for those nodes. In patterns with \^" vld
 symbols,

the vld
 substitutions
over these inserted nodes, making the distan
e zero.

From an intuitive point of view, this means that \j" patterns are more in
exible

than patterns with \^\, and more sensitive to the data tree topology. So, this

hara
teristi
 means that the behaviour of the \j\ substitutions must be taken

into a

ount when building patterns that in
lude this symbol

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e

la
ti
v
e

 d
is

ta
n

c
e

(d

is
ta

n
c
e

 /
 d

a
ta

 t
re

e
 n

o
d

e
s
)

Abstraction (VLDC nodes / data tree nodes)

Umbrella only
Path only

Fig. 9. Tests on quality

6 Con
lusions

Pra
ti
al information retrieval/extra
tion systems often fo
uses on systems for

whi
h the priority is the re
all, to the detriment of pre
ision. This gap is justi�ed

by eÆ
ien
y gains assuming that if the system is too slow it will be intolerable

to use, regardless of its ability to identify relevant do
uments, whi
h may

degrade the performan
e seriously. In this sense, proposals based on approximate

pattern-mat
hing te
hnology allow to modulate both the
omplexity in the query

des
ription and
omputational e�ort, providing a valid starting point to estimate

the impa
t of these fa
tors in the quality of the answer.

A
knowledgments

This work has been partially supported by the Spanish Government

under proje
ts TIC2000-0370-C02-01 and HP2001-0044, and the Autonomous

Government of Gali
ia under proje
t PGIDT01PXI10506PN.

Referen
es

1. Efthimis N. Efthimiadis. Intera
tive query expansion: a user-based evaluation in a

relevan
e feedba
k environment. Journal of the Ameri
an So
iety for Information

S
ien
e, 51(11):989{1003, 2000.

2. P. Kilpel�ainen and H. Mannila. Query primitives for tree-stru
tured data. Le
ture

Notes in Computer S
ien
e, 807:213{225, 1994.

3. M. Vilares. EÆ
ient In
remental Parsing for Context-Free Languages. PhD thesis,

University of Ni
e. ISBN 2-7261-0768-0, Fran
e, 1992.

4. M. Vilares, F.J. Ribadas, and V.M. Darriba. Approximate pattern mat
hing in

shared-forest. Le
ture Notes in Arti�
ial Intelligen
e, 1873:322{333, 2000.

5. M. Vilares, F.J. Ribadas, and V.M. Darriba. Approximate vld
 pattern mat
hing

in shared-forest. Le
ture Notes in Arti�
ial Intelligen
e, 2004:483{494, 2001.

6. J.T.L. Wang, X. Wang, D. Shasha, B.A. Shapiro, K. Zhang, Q. Ma, and Z. Weinberg.

An approximate sear
h engine for stru
tural databases. SIGMOD Re
ord, 29(2):584{

584, 2000.

7. K. Zhang and D. Shasha. Simple fast algorithms for the editing distan
e between

trees and related problems. SIAM Journal on Computing, 18(6):1245{1262, 1989.

8. K. Zhang, D. Shasha, and J.T.L. Wang. Approximate tree mat
hing in the presen
e

of variable length don't
ares. Journal of Algorithms, 16(1):33{66, January 1994.

