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Abstrat. Pattern-mathing an be used to develop query languages for

information retrieval/extration tasks. The operational basis is simple,

sine douments and queries an be represented using the same kind

of struture, douments or fragments that satisfy the query and whih

would be those that are losest to its strutural representation. In

this sense, pattern-mathing makes it possible to ombine a variety of

strutural onstraints in exible ways, allowing the query to be de�ned

approximately, or even omitting some strutural details.

Our goal is to analyze how the lak of strutural information in queries

may degrade performane, and to illustrate the relation between the

omputational work and the e�ort applied by the user to desribe these

queries.

1 Introdution

Representing douments and queries as strutures is a natural way to introdue

pattern-mathing as an operational model for a query language [2℄. In relation

to other approahes, this one provides the exibility to aess di�erent views of

the database, sine it is not always evident how to do this using tehniques based

on lassi indexing methods. This apaity an be used to adapt a formal query

model to pratial user queries, in order to design query languages that are loser

to natural ones, where the level of preision is not easy, or even impossible, to

de�ne.

In the ontext onsidered, pattern-mathing an be studied from two di�erent

points of view: omparing strutures that an only be approximately de�ned [7℄,

or introduing variable length don't are (vld) tehnology in order to omit

strutural details [8℄. In the �rst ase, pattern-mathing an be applied to deal

with queries that an only be approximately de�ned, whih often ours. In

the seond ase, the tehnique an be applied to deal with lak of information

in queries, either beause it is unavailable to the user, or simply beause

the user wants to redue his own workload. Both strategies an orrespond

to omplementary phases in the de�nition of a query onsidering interative

expansion [1℄ and, from the point of view of the user, they make it possible to



ontrol the level of detail in the retrieval/extration proess [6℄. Whatever the

hoie, it impats on both system performane and implementation tehniques.

A subjet of additional interest is the exploitation of sharing between target

strutures with ommon nodes, whih may lead to an inrease in omputational

eÆieny in approximate pattern-mathing [4, 5℄. In e�et, although in the ase

of the query language ambiguity ould probably be eliminated, impreision in

the language intended to represent the doument produes ambiguity. Sine

it is desirable to onsider all possible interpretations for semanti proessing,

it is onvenient to merge strutures as muh as possible, sharing ommon

parts. This ould be applied to a variety of problems, suh as natural language

proessing, where ambiguity and strutural sharing are ommon [3℄. Another ase

is moleular evolution, with many examples indiating that gene dupliation with

fusion has ourred extensively in the past. This provides an as yet unexplored

route to the evolution of new funtions from existing proteins.

Our aim in this paper is to look for both theoretial foundations and pratial

onstraints in the existing relationship between strutural and omputational

omplexity in dealing with query languages based on pattern-mathing, and to

fous on the treatment of strutural sharing. In this way, we hope to bring to

light some of the fators governing the mehanisms behind the pratie, and

their impat on osts from the user's hoies in query proessing.

2 The editing distane

Given P , a pattern tree, and D, a data tree, we de�ne an edit operation as a

pair a ! b; a 2 labels(P ) [ f"g; b 2 labels(D) [ f"g; (a; b) 6= ("; "), where

" represents the empty string. We an delete a node (a ! "), insert a node

(" ! b), and hange a node (a ! b). Eah edit operation has a ost, (a ! b),

that we extend to a sequene S of edit operations s

1

; s

2

; : : : ; s

n

in the form

(S) =

P

jSj

i=1

((s

i

)). The distane between P and D is de�ned by the metri:

Æ(P;D) = minf(S); S editing sequene taking P to Dg

Given an inverse postorder traversal, as is shown in Fig. 1, to name eah node i

of a tree T by T [i℄, a mapping from P to D is a triple (M;P;D), whereM is a set

of integer pairs (i; j) satisfying, for eah 1 � i

1

; i

2

�j P j and 1 � j

1

; j

2

�j D j:

i

1

= i

2

i� j

1

= j

2

P [i

1

℄ is to the left of P [i

2

℄ i� D[j

1

℄ is to the left of D[j

2

℄

P [i

1

℄ is an anestor of P [i

2

℄ i� D[j

1

℄ is an anestor of D[j

2

℄

whih orresponds to one-to-one assignation, sibling order preservation and

anestor order preservation. The ost, (M), of a mapping (M;P;D) is omputed

from relabeling, deleting and inserting operations, as follows:

(M) =

X

(i;j)2M

(P [i℄! D[j℄) +

X

i2D

(P [i℄! ") +

X

j2I

("! D[j℄)



where D and I are, respetively, the nodes in P and D not touhed by any line

in M . Tai proves, given trees P and D, that

Æ(P;D) = minf(M); M mapping from P to Dg

whih allows us to fous on edit sequenes whih are a mapping. We show

in Fig. 2 one example of mapping between two trees, and a sequene of edit

operations whih do not onstitute a mapping. We also introdue r keyroots(T )

as the set of all nodes in a tree T whih have a right sibling plus the root, root(T ),

of T . We proeed through the nodes, �rst determining mappings from all leaf

r keyroots, then all r keyroots at the next higher level, and so on to the root. The

set of r keyroots(T ) is indiated by arrows in Fig. 1. In dealing with approximate

vld pattern-mathing, di�erent strategies are then appliable. Following Zhang

et al. in [8℄, we introdue two di�erent de�nitions for vld mathing:

{ The vld substitutes part of a path from the root to a leaf of the data tree.

We represent suh a substitution, shown in Fig. 2, by a vertial bar "j", and

all it a path-vld.

{ The vld mathes part of suh a path and all the subtrees emanating from

the nodes of that path, exept possibly at the lowest node of that path. At

the lowest node, the vld symbol an substitute a set of leftmost subtrees

and a set of rightmost subtrees. We all this an umbrella-vld, and represent

it by a irumex \^", as shown in Fig. 2.
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Fig. 1. The forest distane using an inverse postorder numbering

We now apture the use of vld symbols. Given a data tree D and a

substitution s on P , we rede�ne: Æ(P;D) = min

s2S

fÆ(P;D; s)g, where S is

the set of all possible vld-substitutions, and Æ(P;D; s) is the distane Æ(

�

P ;D),

being

�

P the result of applying the substitution s to P .

3 Pattern-mathing and parsing

Parsing and tree-to-tree orretion are related and we need to understand the

mehanisms that lead to the tree dupliation in order to gain eÆieny.
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Fig. 2. Examples of mappings

3.1 Fators of interation

The �rst fator is the syntati representation used. We represent a parse in �nite

shared form as the hain of the ontext-free rules used in a leftmost redution of

the input sentene [3℄. The resulting grammar is equivalent to an and-or graph,

whose and-nodes are the usual parse-tree nodes, while or-nodes are ambiguities.

Sharing of strutures is represented by nodes aessed by more than one other

node and it may orrespond to sharing of a omplete tree, but also to sharing

of a part of the desendants of a given node, as shown in Fig. 3.
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n1RULE       : γ1Φ α β δ ρ
n2RULE       : γ2Φ α β δ ρ

γ1 γ2

Φ

α β δ ρ α β δ ρ

Classic forest representation without sharing.

Shared nodes using a top-down parser, with AND-OR graphs.

Shared nodes using a bottom-up parser, with AND-OR graphs.

AND-OR representation with sharing,
for a top-down parsing.
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AND-OR representation with sharing,
for a bottom-up parsing.
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Fig. 3. How shared forests are built using an and-or formalism

Another fator is the parsing sheme applied. So, bottom-up parsing may

share only the rightmost onstituents, while top-down parsing may only share

the leftmost ones. This depends on the type of searh used to build the forest.

Breadth �rst searh results in bottom-up onstrutions and depth �rst searh

results in top-down ones, as is also shown in Fig. 3. Here, one major observation

we noted is that Zhang et al. onsider a postorder traversal, omputing the forest

distane by left-reursion on this searh. So, we would need to onsider a top-

down parser to avoid redundant omputations. However, these parsers are not

omputationally eÆient, and a bottom-up approah requires a rightmost searh

of tree onstituents. This implies rede�ning the original �nding strategy.



3.2 The forest edition distane

We introdue r(i) (resp. an(i)) as the rightmost leaf desendent of the subtree

rooted at T [i℄ (resp. the anestors of T [i℄) in a tree T , and T [i::j℄ as the ordered

sub-forest of T indued by the nodes numbered i to j, inlusive, as is shown

in Fig. 1. In partiular, we have T [r(i)::i℄ as the tree rooted at T [i℄. We now

de�ne the forest edition distane between a target tree P and a data tree D, as

a generalization of Æ, in the form

f d(P [s

1

::s

2

℄; D[t

1

::t

2

℄) = Æ(P [s

1

::s

2

℄; D[t

1

::t

2

℄)

that we denote f d(s

1

::s

2

; t

1

::t

2

) when the ontext is lear. Intuitively, this

onept omputes the distane between two nodes, P [s

2

℄ and D[t

2

℄, in the

ontext of their left siblings in the orresponding trees, while the tree distane,

Æ(P [s

2

℄; D[t

2

℄), is omputed only from their desendants. To be preise, we an

ompute the editing distane t d(P;D) applying the formulae that follow, for

nodes i 2 an(s) and j 2 an(t), assuming P [s℄ is not an inomplete struture:

f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

min

8

>

<

>

:

f d(r(i)::s� 1; r(j)::t) + (P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + ("! D[t℄);

f d(r(i)::s� 1;

r(j)::t � 1) + (P [s℄! D[t℄)

9

>

=

>

;

i� r(s) = r(i) and r(t) = r(j)

min

(

f d(r(i)::s� 1; r(j)::t) + (P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + ("! D[t℄);

f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

When P [s℄ 2 fj;^g, formulae must be adapted, we �rst assume P [s℄ is \j":

f d(r(i)::s; r(j)::t) = min

8

>

>

>

>

>

<

>

>

>

>

>

:

f d(r(i)::s� 1; r(j)::t) + (P [s℄! ");

f d(r(i)::s; r(j)::t � 1) + ("! D[t℄);

f d(r(i)::s� 1; r(j)::t � 1) + (P [s℄! D[t℄);

f d(�;D[r(j)℄::t � 1) + min

t

k

ft d(s; t

k

)

� t d(�; t

k

)g;

1 � k � n

t

9

>

>

>

>

>

=

>

>

>

>

>

;

For the ase where P [s℄ is \^", the formulae are the following:

f d(r(i)::s; r(j)::t) = min

8

>

>

>

<

>

>

>

:

f d(r(i)::s� 1; r(j)::t) + (P [s℄! ");

f d(r(i)::s; r(j)::t� 1) + ("! D[t℄);

f d(r(i)::s� 1; r(j)::t� 1) + (P [s℄! D[t℄);

min

t

k

ft d(s; t

k

)g; 1 � k � n

t

;

min

t

k

fs f d(r(i)::s� 1; r(j)::t

k

)g; 1 � k � n

t

9

>

>

>

=

>

>

>

;

where D[t

k

℄; 1 � k � n

t

, are hildren of D[t℄. If D[t℄ is a leaf, that is t = r(j),

then only the �rst three expressions are present. We de�ne the suÆx forest

distane between F

P

and F

D

, forests in the pattern P and the data tree D

respetively, as s f d(F

P

; F

D

) = min

�

F

D

ff d(F

P

;

�

F

D

)g, where

�

F

D

is a sub-forest



of F

D

with some onseutive omplete subtrees removed from the left, all of

them having the same parent. From a omputational point of view, it an be

proved that

s f d(r(i)::s; r(j)::t) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

min

�

f d(r(i)::s; �);

f d(r(i)::s; r(j)::t)

�

i� r(t) = r(j)

min

(

s f d(r(i)::s� 1; r(j)::t) + (P [s℄! ");

s f d(r(i)::s; r(j)::t � 1) + ("! D[

^

t℄);

s f d(r(i)::r(s)� 1; r(j)::r(t)� 1) + t d(s; t)

)

otherwise

To ompute t d(P;D) it is suÆient to take into aount that t d(P;D) =

f d(root(P )::r(root(P )); root(D)::r(root(D))). Time bound is O(j P jj D j

min(depth(P ); leaves(P ))min(depth(D); leaves(D))) in the worst ase, where

j T j is the number of nodes in a tree T . We talk about elementary operations

to refer to eah one of these minimum values omputed.

4 Pattern-mathing and shared forest

Let P be a labeled ordered tree where some strutural details have been omitted,

and D an and-or graph. We identify P with a query and D with a part of

the syntati representation for a database with a ertain degree of ambiguity.

Let P [s℄ be the urrent node in the inverse postorder for P , and i 2 an(s) a

r keyroot. Given an or-node D[k℄ we an distinguish two situations, depending

on the situation of this or-node and the situation of the r keyroots of D.

4.1 Sharing into a same r keyroot

Let D[t

0

℄ and D[t

00

℄ be the nodes we are dealing with in parallel for two

branhes labeled D[k

0

℄ and D[k

00

℄ of the or-node r(D[k℄). We have that j 2

an(t

0

) \ an(t

00

), that is, the tree rooted at the r keyroot D[j℄ inludes the or

alternativesD[k

0

℄ andD[k

00

℄. Suh a situation is shown in Fig. 4. Here, the lightly

shaded part refers to nodes whose distane has been omputed in the inverse

postorder before the or-node D[k℄. The heavily shaded part represents a shared

struture. The notation \� � �" expresses the fat that we desend along the

rightmost branh of the orresponding tree.

We assume that nodes D[r(t

0

) � 1℄ and D[r(t

00

) � 1℄ are the same, that

is, their orresponding subtrees are shared. So, D[r(t

0

)℄ (resp. D[r(t

00

)℄) is the

following node in D[k

0

℄ (resp. D[k

00

℄) to deal with one the distane for the

shared struture has been omputed. Our aim is to ompute the value for

f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g, proving that we an translate parse sharing

to sharing in omputations for these distanes. Sine we have assumed there is a

shared struture between D[r(

^

t)℄ and D[r(j)℄, we onlude that r(j) 6= r(

^

t) and

the values for f d(r(i)::s; r(j)::

^

t);

^

t 2 ft

0

; t

00

g are given by:



f d(r(i)::s; r(j)::

^

t) = min

8

<

:

f d(r(i)::s� 1; r(j)::

^

t) + (P [s℄! ");

f d(r(i)::s; r(j)::

^

t� 1) + ("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(j)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

where

^

t 2 ft

0

; t

00

g. We an interpret these three alternatives as follows:

1. The values for f d(r(i)::s�1; r(j)::

^

t);

^

t 2 ft

0

; t

00

g have been omputed by the

approximate mathing algorithm in a previous step. So, in this ase, parse

sharing has no onsequenes for the natural omputation of the distanes.

2. Two ases are possible in relation to the nature of nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g:

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

)�1℄ = D[r(t

00

)�1℄ = D[t

00

�1℄, and the values f d(r(i)::s; r(j)::

^

t�

1);

^

t 2 ft

0

; t

00

g are also the same.

{ Otherwise, following the inverse postorder, we would arrive at the

rightmost leaves of D[t

0

℄ and D[t

00

℄, where we ould apply the reasoning

onsidered in the previous ase.

3. Values for the distanes f d(r(s)::r(i) � 1; r(j)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

idential, given that nodes D[r(

^

t)� 1℄;

^

t 2 ft

0

; t

00

g are shared by the parser.
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Fig. 4. Sharing into a same r keyroot

A similar reasoning an be applied to omputing the values for s f d, avoiding

redundant omputations.

4.2 Sharing between di�erent r keyroots

We have that j

0

2 an(t

0

) and j

00

2 an(t

00

), with j

0

6= j

00

, are two r keyroots,

with an or node D[k℄ being a ommon anestor of these two nodes. We suppose

that the r keyroots are in di�erent branhes, namely, there exists a r keyroot,

D[j

0

℄ (resp. D[j

00

℄), in the branh labeled D[k

0

℄ (resp. D[k

00

℄).

Our aim is to ompute the value for distanes f d(r(i)::s; r(̂�)::

^

t), where pairs

(̂�;

^

t) are in f(j

0

; t

0

); (j

00

; t

00

)g. Formally, we have that these values are given by:



f d(r(i)::s; r(̂�)::

^

t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
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:
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>
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>

>
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f d(r(i)::s� 1; r(̂�)::

^

t) + (P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + ("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + (P [s℄! D[

^

t℄);

f d(�;D[r(̂�)℄::

^

t� 1) + min

^

t

k

ft d(s;

^

t

k

) �

t d(�;

^

t

k

)g 1 � k � n

^

t

9
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>
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f d(r(i)::s� 1; r(̂�)::

^
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f d(r(i)::s; r(̂�)::

^

t� 1) + ("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + (P [s℄! D[

^

t℄);

min

^

t

k

ft d(s;

^

t

k

); 1 � k � n

^

t

;

min

^

t

k

fs f d(r(i)::s� 1; r(̂�)::

^

t

k

); 1 � k � n

^

t

9

>

>

>

=

>

>

>
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i� P [s℄ = ^

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) + (P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + ("! D[

^

t℄);

f d(r(i)::s� 1; r(̂�)::

^

t� 1) + (P [s℄! D[

^

t℄)

9

=

;

otherwise

i� r(s) = r(i) and r(

^

t) = r(̂�)

min

8

<

:

f d(r(i)::s� 1; r(̂�)::

^

t) + (P [s℄! ");

f d(r(i)::s; r(̂�)::

^

t� 1) + ("! D[

^

t℄);

f d(r(i)::r(s)� 1; r(̂�)::r(

^

t)� 1) + t d(s;

^

t)

9

=

;

otherwise

The situation, shown in the �rst ase of Fig. 5, makes possible r(s) = r(i)

and r(

^

t) = r(̂�). We an assume that a tail of sons is shared by nodes

D[

^

t℄;

^

t 2 ft

0

; t

00

g, as well as that this tail is proper given that, otherwise, our

parser guarantees that the nodes D[

^

t℄;

^

t 2 ft

0

; t

00

g are also shared. Taking into

aount that we identify syntati strutures and omputations, we onlude that

the distanes f d(r(i)::s; r(̂�)::

^

t), with (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g do not depend

on previous omputations over the shared tail. This sharing has no e�et on the

omputation, although it does a�et the omputation of distanes for nodes in

the rightmost branh of the tree immediately to the left of the shared tail of

sons, denoted by a double dotted line in the seond ase of Fig. 5.

The omputation of the forest distane when r(

^

t) 6= r(̂�), is shown in the

seond ase of Fig. 5. In relation to eah one of the three alternative values used

to ompute the minimum, we have that:

1. The values for f d(r(i)::s � 1; r(̂�)::

^

t); (̂�;

^

t) 2 f(j

0

; t

0

); (j

00

; t

00

)g have been

omputed by the approximate mathing algorithm in a previous step and

parse sharing does not a�et the omputation for distanes.

2. We distinguish two ases in relation to the nature of nodes D[

^

t℄;

^

t 2 f(t

0

; t

00

):

{ If both nodes are leaves, then r(

^

t) =

^

t. We have then that D[t

0

� 1℄ =

D[r(t

0

) � 1℄ = D[r(t

00

) � 1℄ = D[t

00

� 1℄, and therefore the values for



distanes f d(r(i)::s; r(̂�)::

^

t� 1) with (̂�;

^

t);2 f(j

0

; t

0

); (j

00

; t

00

)g, are also

the same.

{ Otherwise, following the inverse postorder, we arrive at the rightmost

leaves of D[t

0

℄ and D[t

00

℄, where we an apply the reasoning onsidered

in the previous ase.

3. Values for the distanes f d(r(i)::r(s) � 1; r(

^

t)::r(

^

t) � 1);

^

t 2 ft

0

; t

00

g are

idential, given that the trees rooted by nodes D[r(

^

t) � 1℄;

^

t 2 ft

0

; t

00

g are

shared by the parser.

As in the ase of sharing in a same r keyroot, a similar reasoning an be applied

to ompute the values for s f d, avoiding redundant omputations.

5 Experimental results

To deal with approximate pattern-mathing as a query faility, we are interested

in both onsidering the point of view of the user, whih determines the hoie

of one or other vld symbol, and in showing the inuene of this hoie on

the overall omputational ost. We also estimate the impat of sharing on the

proess desribed. This is of interest, beause user queries an vary widely from

the norm. Thus, the goal is to �nd a pattern whih most losely mathes the

user query. Ambiguity arises, sine this query an be onsidered to be a distorted

version of any of several possible patterns. So, sharing saves on the spae needed

to represent these strutures, and also on their later proessing.
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Fig. 5. Sharing between di�erent r keyroots

In order to interpret the pratial results, we need a formal environment. So,

we de�ne a set of properties whih are of interest in an approximate pattern-

mathing algorithm. The �rst property is the abstration, a ratio between the

number of nodes partiipating in the substitutions of vld symbols related to

the total number of nodes in the data tree. Intuitively, the abstration measures

the entity of the regions overed by vld symbols. If we onsider that greater



levels of abstration in the query means a smaller e�ort of the user to express

it, we have a simple riterion to reet this e�ort.

The seond property is the e�ort, the number of elementary operations

applied, whih measures the omputational e�ort. The third property is the

performane, de�ned as the ratio between the number of the vld operations

ontributing to the �nal distane, and the total number of vld operations

atually omputed. This allows us to estimate the atual exploitation of the

omputations involving vld symbols. Finally, to measure the quality of the

pattern-mathing proess, we onsider the ratio between the distane obtained

by the algorithm and the number of nodes in the data tree. To perform the tests,

we have onsidered shared forest obtained from the parsing of sentenes of the

form "John gives the ake to (the friend of)

i

Mary", for value of i = 7, using

the following non-deterministi grammar of English:

(1) S ! NP VP (5) NP ! det noun PP

(2) VP ! verb NP PP (6) NP ! det noun PP PP

(3) NP ! noun (7) PP ! prep NP

(4) NP ! det noun

Given that the grammar ontains a rule \NP ! det noun PP PP", these

sentenes have a number of ambiguous parses whih grows exponentially with i.

This allow us to evaluate our proposal in a strongly ambiguous ontext, in spite

of the simpliity of the grammar. As patterns, we have used a set of deterministi

parse trees. To start with, we have onsidered a deterministi parse tree for the

sentene "John gives the ake to (the friend of)

5

Mary". We then generate new

pattern trees by means of the inlusion of vld nodes in suh a way that the

vagueness of the resulting patterns inreases, as shown in Fig. 6. To show the

di�erene between the vld symbols, we have onsidered two di�erent sets of

patterns, one inluding only "^" symbols and another with only "j" symbols.
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Fig. 6. Pattern trees, lassi and and-or graph, used in our tests

The experimental results are shown in Figs. 7, 8 and 9. In all ases, we

represent the level of abstration in the patterns used on the X-axis. As expeted,



abstration values inrease as long as the pattern tree inludes more vld

symbols. It should also be notied that the abstration we get with patterns

using only \j" vld is muh more redued than in patterns that inlude \^"

nodes. This a onsequene of the kind of vld substitutions performed in the \j"

nodes, that inludes only a sub-path of nodes, but not omplete subtrees. All

tests illustrated reet evidene an important redution in the omputational

ost due to strutural sharing.
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Fig. 7. Tests on e�ort

In Fig. 7, we show the e�ort values obtained for di�erent patterns with an

inreasing degree of abstration. In our example, the tests show a redution in

the e�ort when the abstration inreases. This is due to the fat that patterns

with a greater abstration have fewer nodes than more preise ones. In the

ase of patterns with only \j" vld symbols, the e�ort is smaller, beause the

algorithm does not need to ompute the s f d values. As a onsequene, the use

of \^" symbols always inreases the e�ort, with approximately twie the number

of elementary operations being needed to ompute the �nal distane. From an

intuitive point of view, these results indiate that the omputational e�ort is in

inverse orrespondene to the desription e�ort applied by the user to express

the query, whih seems natural.

In Fig 8, we an see that the highest performane is given for patterns with

only \j" vld symbols. This behavior is again derived from the fat that in

those patterns there is no need to ompute s f d values. Although the number

of vld operations used may be less, the total number of vld omputations

is muh smaller than in the ase of \^" patterns, sine the algorithm does not

have to ompute s f d 's. Intuitively, this is due to the fat that vagueness in the

desription of the query favours the pattern-mathing proess sine strutural

onstraints are relaxed.

Finally, in Fig. 9, we show the inuene of the di�erent kinds of patterns on

the �nal distane obtained by the algorithm in our tests. The most interesting
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Fig. 8. Tests on performane

feature of these results is the behavior when the pattern has only \j" vld

symbols. In this ase, as the pattern gets less spei�, so the distane inreases.

The reason is that, when the \j" pattern beomes more general, there are fewer

nodes spei�ed in the pattern, and, in the best mapping, it is neessary to

inlude insert operations for those nodes. In patterns with \^" vld symbols,

the vld substitutions over these inserted nodes, making the distane zero.

From an intuitive point of view, this means that \j" patterns are more inexible

than patterns with \^\, and more sensitive to the data tree topology. So, this

harateristi means that the behaviour of the \j\ substitutions must be taken

into aount when building patterns that inlude this symbol
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6 Conlusions

Pratial information retrieval/extration systems often fouses on systems for

whih the priority is the reall, to the detriment of preision. This gap is justi�ed

by eÆieny gains assuming that if the system is too slow it will be intolerable

to use, regardless of its ability to identify relevant douments, whih may

degrade the performane seriously. In this sense, proposals based on approximate

pattern-mathing tehnology allow to modulate both the omplexity in the query

desription and omputational e�ort, providing a valid starting point to estimate

the impat of these fators in the quality of the answer.
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