
A Language for Updates with Multiple
Dimensions

João Alexandre Leite1, José Júlio Alferes1, Lúıs Moniz Pereira1, Halina
Przymusinska2, and Teodor C. Przymusinski3

1 CENTRIA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
2 Computer Science, California State Polytechnic Univ. Pomona, CA 91768, USA

3 Computer Science, Univ. of California Riverside, CA 92521, USA

Abstract. Dynamic Logic Programming (DLP) was introduced to deal
with knowledge about changing worlds, by assigning semantics to se-
quences of generalized logic programs, each of which represents a state
of the world. These states permit the representation, not only of time,
but also of specificity, strength of updating instance, hierarchical posi-
tion of the knowledge source, etc. Subsequently, the Language of Updates
LUPS was introduced to allow for the association, with each state, of a
set of transition rules. It thereby provides for an interleaving sequence of
states and transition rules within an integrated declarative framework.
DLP (and LUPS), because defined only for a linear sequence of states,
cannot deal simultaneously with more than a single dimension (e.g. time,
hierarchies,...). To overcome this limitation, Multi-dimensional Dynamic
Logic Programming (MDLP) was therefore introduced, so as to make
it possible to organize states into arbitrary acyclic digraphs (DAGs).
In this paper we now extend LUPS, setting forth a Language for Multi-
dimensional Updates (MLUPS). MLUPS admits the specification of flex-
ible evolutions of such DAG organized logic programs, by allowing not
just the specification of the logic programs representing each state, but
to the evolution of the DAG topology itself as well.

1 Introduction

Inspired by the earlier work on program updates [14, 21, 23, 26], [1] introduces the
paradigm of Dynamic Logic Programming (DLP). According to DLP, knowledge
is given by a linearly ordered sequence of theories (each encoded as a generalized
logic program, i.e. one where default negation may appear both in rule bodies
and heads) that represent distinct and dynamically changing states of the world.
The semantics of DLP ensures that all previous rules remain valid (by inertia)
so long as they are not contradicted by newer (prevailing) rules, in which case
they are rejected1.

DLP can be used to model the stages of evolution of a single agent over time.
And it can be also employed to model a linear hierarchy relationship of a group
of agents, where rules from supervenient agents may be used to reject rules from
1 Similar approaches exist (eg. [4],[7]) and comparisons to DLP can be found in [7].

2 João Alexandre Leite et al.

superseded ones. But it cannot deal with both settings at once, and model the
evolution of one such group of agents over time, inasmuch DLP is defined for lin-
ear sequences of states alone. To overcome this limitation, Multi-dimensional Dy-
namic Logic Programming (MDLP) [17] was introduced. According to MDLP
knowledge is given by a set of logic programs, indexed by collections of states
organized into arbitrary directed acyclic graphs (DAGs) representing precedence
relations (where an edge from a to b means that state b prevails over state a).

MDLP can provide a declarative semantics for modelling the evolution of a
group of agents over time, where each node in the DAG is made to stand for the
(updating) program acquired by some agent at some time point [18]. However, it
does not comprise a language for specifying (or programming) forms of updating
the agents. Indeed, if the knowledge of the various agents is already represented
by an appropriate DAG of programs, MDLP determines its semantics. But how
is knowledge evolution specified? How does the DAG itself grow by introducing
new nodes after an update? How do new nodes connect with extant ones?

In order to address this issue, in this paper, and on the basis of the language
LUPS [2], we define the Language for Multi-dimensional Updates (MLUPS).
MLUPS is an update command language with the powerful capability of ex-
pressing concurrent updates of a number of agents. Intuitively, collections of
update commands (such as asserts, retracts, persistent asserts, etc) are given to
such agents, at each time point. As a result, each agent evolves as a sequence
of programs, each containing the rules given to it at each point. In these time
lines, according to MDLP, rules from later programs may be used to reject rules
from previous ones. Additionally, the agents can be hierarchically organized, so
that rules from preferred agents prevail over rules from less preferred ones. The
agents’ hierarchy imposes a DAG configuration among the programs that con-
stitute the agents’ time lines. Different policies of imposing configurations over
the agents are possible. E.g. by α1 being preferred over α2 one may simply want
to state that rules given at a time point t to α1 may be used to reject rules given
to α2 at t (we dub this policy “equal role representation”). But one may want
to impose more, namely that any rule of α1, even if given before t, may be used
to reject rules given to α2 at t (“hierarchy prevalence representation”). Another
policy might be to state that rules given at a time point t to either α1 or α2

may be used to reject rules given to α1 or α2 at any time < t (“time prevalence
representation”).

The update commands of MLUPS can be made conditional on the present
state of a collection of agents, and thus dynamically change with the changes in
individual agents or changes in their mutual relationships. Moreover, the hierar-
chy among agents may be subjected to update commands as well, thereby influ-
encing the dynamic reconfiguration of the DAG. Sequences of multiple MLUPS
commands applied to the initial state of the graph result in a sequence of graphs
whose semantics of intermediate and final nodes precisely coincides with the
semantics of the MDLP generated by those commands.

The motivation for some of these concepts is best seen with an example.

A Language for Updates with Multiple Dimensions 3

Example 1. I have two advisers who help me decide how to manage my money.
Each informs me about rules I might use in deciding what to buy, and which I
store in two corresponding MLUPS agents, adviser1 and adviser2 (each evolv-
ing along a corresponding sequence of programs). These advisers could in turn
have themselves their own advisers, in a more elaborate version of the example.
Such advice rules could be: whenever there is a bull market, or if you’re willing
to take risks, buy TMT stocks; whenever there is a bear market do not buy
TMT stocks, and opt for treasury bonds instead, unless you’re willing to take
risks ;... Moreover, in my knowledge base I also store rules concerning my own
opinion on what to buy, that prevail over the rules given by my advisers. For
example: if my budget is below a certain limit, then I do not buy anything; I
never buy both TMT stocks and treasury bonds; if I come in possession of a lot
of money, and I have enough invested in bonds, then I’m willing to risk. These
can be stored in a MLUPS agent called myself , which is of higher priority than
adviser1 and adviser2 in the agent hierarchy, and where even older rules from
myself prevail over newer ones coming from the advisers (i.e. for configuring the
DAG, the connections between the sequence corresponding to myself and those
corresponding to adviser1 and adviser2 are established according to the hier-
archy prevalence representation policy). I also consider another MLUPS agent,
reality, where information about what is happening in the world is stored (e.g.
about there being a bull or bear market).

The relationship between the MLUPS agents for the advisers may change
over time. For example, initially I may not consider any hierarchical relation
between them, and set a configuration policy so that more recent advice, no
matter which adviser issued it, prevails over all older ones (i.e. time prevalence).
Later I can lend priority to one of the advisers, and relate them through a
hierarchical prevalence representation. Later still, I may change the hierarchy,
and assign priority to the other adviser instead.

The modelling in MLUPS of a concrete simplified update history for this
example is presented below in Example 4.

This scenario illustrates one possible application of MLUPS, corresponding
to its use in specifying knowledge integration agents that keep an up-to-date
view of the knowledge produced by a dynamic multi-agent community, assign-
ing semantics to the combination of all knowledge pieces. MLUPS specifiable
knowledge integration agents can be useful, for example, in legal reasoning sce-
narios where different legislative bodies constantly and independently produce
laws that have to be combined and integrated according to existing collision
principles. Such collision principles are directly encodable with MLUPS, either
by means of the hierarchical and temporal relations (e.g. the collision principles
Lex Superior Derogat Legi Inferiori and Lex Posterior Derogat Legi Priori) or
by means of the prevalence modes(e.g. the collision principle Lex Superior Priori
Derogat Legi Inferiori Posterior which corresponds to the “hierarchy prevalence
representation”). In general, MLUPS allows for the specification of the evolu-
tion of agents whose knowledge depends on their view of other agent’s knowledge
within a dynamic multi-agent system. The generality provided by the underlying

4 João Alexandre Leite et al.

updatable logic programming based knowledge representation, and the flexibil-
ity provided by the commands that allow the specification and update of the
hierarchies relating different agents and the evolution of such relations keep all
doors open for MLUPS to be used as the update specification language on top
of existing logic programming based multi-agent systems.

Throughout this paper, MLUPS will be introduced in an incremental fashion.
We start with a simple version comprising a set of commands that permit the
specification of the next temporal state of a group of agents, but whose organizing
DAG evolves according to a fixed preference policy. Subsequently, we introduce
a new set of commands to allow the hierarchy among the agents to evolve from
state to state. Finally, we include yet another set of commands with the purpose
of being able to change the policy of connecting the agents. In appendix A we
recapitulate the basic definitions of MDLP.

2 MLUPS

In this section we set forth the core language of MLUPS. We start with a fixed
set of agents A =

{
α0, α1, . . . , αn

}
represented by nodes linked according to a

fixed hierarchy encoded by the hierarchy (labelled) graph H = (A,HE) where
HE is a set of labelled edges of the form

(
αi, αj , t

)
where αi, αj ∈ A and t ∈ T ,

where T = {0, 1, ..., n, ...} is a set of (time) states. We call it core because the
evolution of the topology of the DAG is fixed, in the sense that the edges linking
the various nodes are determined as per an initial hierarchy (the temporal label
in each edge of H is not used in this core version) plus the sequence of time
states. At each time state a new node for each agent in A is created, linked to
its previous instance. Such new nodes are linked amongst themselves according
to the hierarchy H. In Sect. 3 we extend MLUPS to cater for the specification
of the evolution of H. Because each new node is also linked to its predecessor,
i.e. the node corresponding to the same agent at the previous time state, there
is created a time state line in each agent. In this scenario, which gives rise to
the “equal role representation” mentioned in the introduction, a rule given to
an agent αi at time t may be rejected by a rule given to the same αi at any
later time tl > t, or by a rule given to a preferred agent αj at the same t. No
precedence exists over a higher ranked older program by a lower ranked but
newer one. In Sect. 3, we also extend MLUPS to allow other evolution modes.

2.1 Syntax

The syntax of MLUPS is based on the LUPS commands [2], but now extended
to cater for specifying in which agents are the updates performed, and in which
agents are conditions testes. The simplest command consists of adding a rule
to a new state of an agents α: assert Rule@α. For instance, in the setting of
Example 1, the addition to myself , of a rule stating that I’m willing to risk if I
have lots of money is accomplished by: assert (risk ← money)@myself .

A Language for Updates with Multiple Dimensions 5

In general, the addition of a rule to an agent may depend upon some pre-
conditions to be verified at the most recent nodes of some set of agents. For this
purpose, a general assert statement has the form:

assert Rule@α when L1@Ω1, . . . , Lk@Ωk

The meaning of this statement is that, if L1 holds at the most recent nodes
of the agents in the set Ω1, and . . . , and Lk holds at the most recent nodes of
the agents in the set Ωk, then the command assert Rule@α must be executed
(i.e Rule must be added to a new node of agent α).

While some update commands, such as the one above for myself , represent
newly incoming information, and thus are one-time non-persistent commands
(i.e. the rule risk ← money, though it may remain valid by inertia for subsequent
states, is added only once), some other commands are liable to be persistent, i.e.
to remain in force until cancelled. An example of such persistent commands can
be found in Example 1, e.g. in the statement “whenever there is a bear market
do not buy TMT stocks”. This statement is stating that the fact not buy(stocks)
is to be asserted (at adviser2) if bear is true at reality, and that this command,
instead of being valid just at the time it is given, should persist in the future
(perhaps till cancelled later). Such persistent update statements have the form:
always assert Rule@α when Conds, where Conds is as explained above for
assert statements. For cancelling persistent assert commands, MLUPS includes a
commands cancel assert Rule@α, and a corresponding general statement with
the when conditions.

For the retraction of added rules, MLUPS offers non-persistent and persistent
retract commands. The former indicates the retraction of a rule from an agent
at the moment it is given (if some conditions are met, in case when conditions
are mentioned); the latter states that from the moment it is given onwards,
whenever some conditions are met, the retraction is to be performed.

As in LUPS, in the commands for asserting or retracting rules (both per-
sistent and non-persistent) the rule may be preceded by the keyword event,
in which case it is added to (resp. retracted from) the next state but retracted
(resp. reasserted) immediately afterwards.

More precisely:

Definition 1 (MLUPS Commands and Statements). An MLUPS com-
mand is a propositional expression of any of the forms2:

[always] assert [event] R@α cancel assert R@α
[always] retract [event] R@α cancel retract R@α

where R is a rule and α ∈ A.
An MLUPS statement is a command extended with conditions, of the form:

<command> when L1@Ω1, . . . , Lk@Ωk

2 By [keyword] we mean either the presence or absence of keyword. For example,
assert event R@α and always assert event R@α are both commands of MLUPS.

6 João Alexandre Leite et al.

where < command> is any one of the above commands, each Li is literal from
L, and each Ωi ⊆ A.

We establish several conventions (used throughout the paper) to simplify the
syntax of the when statement, namely: if conjunction of literals refers to the
same set of agents Ω, instead of L1@Ω, . . . , Lk@Ω we write {L1, . . . , Lk}@Ω;
if a set of agents Ω has a single element, instead of L@ {α} we write L@α; if
Ω = A, instead of L@A we write L.

Definition 2 (MLUPS Program). An MLUPS program is a sequence of sets
of statements.

We use the notation U1 ⊗ ... ⊗ Un to represent an MLUPS program where
each Ui is a set of statements.

Knowledge can be queried, wrt sets of agents, at any time state t ≤ n, where n
is the current time state. A query is denoted by holds L1@Ω1, . . . , Lk@Ωk at t?,
where each Li is a literal from L, and each Ωi ⊆ A.

2.2 Semantics

An MLUPS program builds a corresponding MDLP, and its semantics is deter-
mined by the semantics of the MDLP. Accordingly, for defining the semantics
of an MLUPS programs, all it needs to be done is to define what is the corre-
sponding built MDLP.

Let U = U1 ⊗ ...⊗Un be an MLUPS programs. At every time state t we de-
termine the corresponding MDLP, Υt (U) = Pt = (PDt ,Dt) where Dt = (Vt, Et)
is the MDLP DAG and PDt = {Pv : v ∈ Vt}. The MDLP DAG Dt will contain
all the existing nodes at the previous time state, together with a new node for
each agent, indexed by the new time state t. These new nodes will be connected
among each other according to the hierarchy in H, i.e., if in H α1 prevails over
α2 we add an edge(α2t, α1t). Moreover, they are connected to the remainder of
the graph according to the intuition presented before, i.e. for each agent α we
add an edge (αt−1, αt). Note again that in this simple version there are no edges
directly relating nodes that are not related either by H or by T . Formally:

Definition 3 (MDLP DAG at time state t). The MDLP DAG at time
state t is Dt = (Vt, Et), where Vt is defined as follows: V0 =

{
αk

0 : αk ∈ A
}

and
Vt = Vt−1 ∪

{
αk

t : αk ∈ A
}
. Et is defined as follows:

E0 = {(αj
0, α

k
0) :

(
αj , αk,

)
∈ HE}

Et = Et−1 ∪ {
(
αk

t−1, α
k
t

)
: αk ∈ A} ∪ {(αj

t , α
k
t) :

(
αj , αk,

)
∈ HE}

Given a set of MLUPS statements, one has to first determine which of those
are executable, i.e. which of those have their when conditions verified. For this
purpose, we have first to evaluate the when conditions at the appropriate sets
of agents. Based on this, the executable commands may be determined.

A Language for Updates with Multiple Dimensions 7

Definition 4 (Valuation). Given an MDLP Pt = (PDt ,Dt), a time state
i ≤ t, and an expression φ = L1@Ω1, . . . , Lk@Ωk. We say that

⊕
i Pt |= φ

iff
⊕

{αj
i :α

j∈Ω1} Pt |= L1 ∧ ... ∧
⊕

{αj
i :α

j∈Ωk} Pt |= Lk. If i = t we simply write
⊕

Pt |= φ.

Definition 5 (Executable Commands). Let U be a set of statements and
Pt = (PDt ,Dt) an MDLP. By the set of executable commands corresponding to
U , wrt Pt we mean ∆Pt

U defined as follows:

∆Pt
U = {<command> : (<command> when ψ ∈ U) ∧

⊕
Pt |= ψ}

We can now determine the object level programs that are associated with
each vertex of the MDLP DAG. This will be accomplished, as in LUPS, by
determining a set of persistent commands at each time state, to which we add
the new commands. The resulting set of commands determines each of the object
level programs. To be able to retract rules and properly handle non-inertial
commands, we need to augment the language of the resulting multi-dimensional
dynamic program with a new propositional variables “n(R)” for every rule R
appearing in the original MLUPS program, and new propositional variables
“ev(R,S)” for every rule R appearing in a non-inertial command in the original
MLUPS program, and every time state S. The object level programs are then
obtained as per the following definition:

Definition 6 (Object Level Programs at time state t). The set of object
level programs at time state t, PDt = {Pv : v ∈ Vt}, is inductively defined as
follows:

Base Step: Pαk
0

= {} and PC0 = {}
Inductive Step:

PCt = PCt−1 ∪ {assertR@αwhenφ : always assertR@αwhenφ ∈ Ut}∪
∪{retractR@αwhenφ : always retractR@αwhenφ ∈ Ut}∪
∪{assert eventR@αwhenφ : always assert eventR@αwhenφ ∈ Ut}∪
∪{retract eventR@αwhenφ : always retract eventR@αwhenφ ∈ Ut}−
−

{
assert [event] R@αwhenφ : cancel assertR@α ∈ ∆Pt−1

Ut

}
−

−
{
assert [event] R@αwhenφ : always retract [event] R@α ∈ ∆Pt−1

Ut

}
−

−
{
retract [event] R@αwhen φ : cancel retractR@α ∈ ∆Pt−1

Ut

}
−

−
{
retract [event] R@α when φ : always assert [event] R@α ∈ ∆Pt−1

Ut

}

NUt = Ut ∪ PCt

Pαk
t

=
{
not n(R) ←: retractR@αk ∈ ∆Pt−1

NUt

}
∪

∪
{

n(R) ←;h(R) ← b(R), n(R) : assertR@αk ∈ ∆Pt−1
NUt

}
∪

∪
{

h(R) ← b(R), ev(R, t) : assert eventR@αk ∈ ∆Pt−1
NUt

}
∪

∪
{
not n(R) ← ev(R, t) : retract eventR@αk ∈ ∆Pt−1

NUt

}
∪

∪{not ev(R, t − 1) ←; ev(R, t) ←}

8 João Alexandre Leite et al.

where if r is a clause (or rule) of the form L0 ← L1, . . . , Ln, by h(r) we mean
L0, by b(r) we mean L1, . . . , Ln.

As mentioned before, the semantics of an MLUPS program is determined by
the semantics of the so built MDLP :

Definition 7 (MLUPS Semantics). Let U = U1 ⊗ ... ⊗ Un be an MLUPS
program. A query holds L1@Ω1, . . . , Lk@Ωk at t? is true in U iff

⊕
Υt (U) |=

L1@Ω1, . . . , Lk@Ωk, or, equivalently, iff
⊕

Pt |= L1@Ω1, . . . , Lk@Ωk.

The semantics of LUPS [2, 15] coincides with a fragment of MLUPS. Such
fragment is obtained by restricting the set of agents A to contain one agent only.

Theorem 1. Let Q = Q1 ⊗ ... ⊗ Qn be an MLUPS program (with A = {α})
and U = U1 ⊗ ... ⊗ Un be a LUPS update program such that:

< command> R@α when L1@α, . . . , Lk@α ∈ Qi iff
< command> R when L1, . . . , Lk ∈ Ui

Then, the query holds L1, . . . , Lk at t? is true in U (according to [15]) iff the
query holds L1@α, . . . , Lk@α at t? is true in Q.

3 Extending MLUPS with DAG Commands

The MLUPS framework presented in the previous section only allows the evolu-
tion of an MDLP whose structure, encoded by the MDLP DAG, is quite strict
in the sense that the hierarchy relating the different agents is fixed and there are
no edges directly relating different agents in different time states. In this section
we propose two general extensions to the basic MLUPS that allow for a more
flexible evolution of the MDLP DAG, in particular, enabling removal of these
two limitations.

3.1 Hierarchy Commands

We start with an extension that permits the hierarchy DAG to evolve, instead
of the fixed hierarchy among agents H of the previous section. We thus need
some way to specify the addition and removal of hierarchy edges between pairs
of agents. To this purpose, to the basic MLUPS commands we add commands
for the manipulation of the hierarchy H (with αj , αk ∈ A):

add hierarchy edge αj → αk

remove hierarchy edge αj → αk

The intuitive reading of these commands is straightforward: the first indicates
that to the hierarchy graph we must add an edge from αj to αk, and the second
one indicates that from the hierarchy graph we must remove any existing edge

A Language for Updates with Multiple Dimensions 9

from αj to αk.3 With these commands, we no longer need an initial fixed hier-
archy graph. The hierarchy is given by a hierarchy graph that is initially empty
and evolves from time state to time state, and defined as follows (considering an
MLUPS program U = U1 ⊗ ... ⊗ Un):

Definition 8 (Hierarchy DAG at time state t). The hierarchy (labelled)
DAG at time state t is Ht = (A,HEt) where HEt is defined as follows: HE0 =
{} and

HEt = HEt−1 ∪
{(

αj , αk, t
)

: add hierarchy edge αj → αk ∈ Ut

}
−

−
{(

αj , αk,
)

: remove hierarchy edge αj → αk ∈ Ut

}

if Ht is a DAG. Otherwise, it is not defined.

The semantics of this extended language is equal to the one in the previous
section, except that, in Definition 3, we replace HE by HEi.

3.2 Prevalence Mode Commands

In the previous section we’ve proposed MLUPS to construct MDLPs that evolve
according to the “equal role representation”. As we have seen in Example 1, other
representation policies might be needed in practice. For allowing for other poli-
cies, in this section we introduce another extension to the MLUPS language, by
means of a set of commands to allow a flexible evolution of the MDLP DAG. In
this more general setting, the MDLP DAG contains, besides the edges relating
each agent in different time states and several agents inside each time state,
another set of edges specified by user defined functions. Such functions specify
the evolution of the MDLP DAG, by defining which edges should be created at
each time state transition. This fosters the construction of more general MDLP
DAGs, among which those representing the “hierarchy prevalence representa-
tion” and “time prevalence representation” modes [18]. According to hierarchy
prevalence, any rule indexed by a higher ranked agent overrides any lower ranked
agent’s rule, independently of the time state it is indexed by. According to time
prevalence, any rule indexed by a more recent time state overrides any older rule,
independently of which agents these rules belong to.

Instead of concentrating on some specific policies (such as the ones mentioned
above and in the example, here we consider general functions f ∈ F with signa-
ture f : A2×{<,=}×T 3 −→ 2{+,−}×(A×T)2 . Each function f ∈ F , defines a set
of edges of the forms +(αj

t1 , α
k
t2) and −(αj

t1 , α
k
t2) where αj , αk ∈ A, t1, t2 ∈ T ,

given a pair of agents, their relation, the current time state, and two other time
states indicating when the prevalence mode represented by f and the agents
relation were set. Below we will show some examples of such functions. The new
commands are (with αj , αk ∈ A, and f ∈ F):

add prevail mode αj f←→ αk

remove prevail mode αj f←→ αk

3 A when statement could also be added to these commands, its effect being as for
the commands of the basic language. For simplicity we omit it.

10 João Alexandre Leite et al.

Since the prevalence modes should persist until removed, we need to keep
info about the prevalence mode at each time state. As will become clear when
we look closer at the interesting cases of such functions, we also need to keep
track of when such prevalence modes were set. This is formalized as follows:

Definition 9 (Prevalence Mode at time state t). The prevalence mode at
time state t, PMt, is a set of tuples of the form {

({
αj , αk

}
, f, n

)
: αj , αk ∈

A, f ∈ F , n ∈ T }, where each tuple references a function, the time state when it
was set, and the two agents involved. It is defined as follows: PM0 = {} and

PMt = PMt−1 ∪ {({αj , αk}, f, t) : add prevail mode αj f←→ αk ∈ Ut}−
−{({αj , αk}, f,) : remove prevail mode αj f←→ αk ∈ Ut}

These commands affect the DAG at state t by adding and removing edges.

Definition 10 (Added and Removed Prevalence Edges at time state
t). The set of added (resp. removed) prevalence edges at time state t is PE+

t

(resp. PE−
t), is defined as follows:

PE+
t = {(αj

t1 , α
k
t2) : +(αj

t1 , α
k
t2) ∈ PEt}

PE−
t = {(αj

t1 , α
k
t2) : −(αj

t1 , α
k
t2) ∈ PEt}

where PEt = PE<
t ∪PE=

t , where PE<
t =

⋃
f

(
αj , αk, <, t, n,m

)
for all f, αj , αk,

n,m such that
({

αj , αk
}

, f, n
)

∈ PMt, and
(
αj , αk,m

)
∈ HEt, and where

PE=
t =

⋃
f

(
αj , αk,=, t, n, 0

)
for all f, αj , αk, n such that

({
αj , αk

}
, f, n

)
∈

PMt, and
(
αj , αk,

)
,
(
αk, αj ,

)
/∈ HEt.

Since some of the functions that specify which edges are to be added or
removed are sensitive to the existence (or not) of a hierarchical relation between
the pair of involved agents, a test is first performed ((αj , αk,m) ∈ HEt or
(αj , αk,), (αk, αj ,) /∈ HEt) resulting in the parameter < or = being passed to
the function. Then, PEt will contains all edges (added and removed) defined by
all current prevalence modes, defined by the functions f , for each pair of agents.
Such edges are then separated in two sets, PE+

t and PE−
t , containing the edges

to be added and those to be removed, respectively.
Note that a pair of agents can have more than one prevalence mode at each

time. To restrict to a single prevalence mode at each time, all that needs to be
done is to issue the command remove prevail mode αj F←→ αk when issuing
the command add prevail mode αj f←→ αk.

The MDLP DAG at time state t is now defined as:

Definition 11 (MDLP DAG at time state t). The MDLP DAG at time
state t is Dt = (Vt, Et), where Vt is defined as follows: V0 =

{
αk

0 : αk ∈ A
}

and
Vt = Vt−1 ∪

{
αk

t : αk ∈ A
}
. Et is defined as follows: E0 = {} and

Et = Et−1∪{
(
αk

t−1, α
k
t

)
: αk ∈ A}∪{(αj

t , α
k
t) :

(
αj , αk,

)
∈ HEt}∪PE+

t −PE−
t

if Dt is a DAG. Otherwise, it is not defined.

A Language for Updates with Multiple Dimensions 11

We follow up with interesting examples of functions. Recall that function
f

(
αj , αk, h, t, n,m

)
parameters have the following meaning: αj and αk are the

two agents involved; h ∈ {<,=} contains the hierarchy relation between αj and
αk: h = “ < ” means that αj < αk, and h = “ = ” means that αj and αk

are not directly hierarchically related; t is the current time state; n is the time
state when the prevalence mode f was set; m is the time state when the current
hierarchical relation between αj and αk was set. Not all parameters will be used
by all functions.

Time Prevalence: According to this prevalence mode, any rule indexed by
a more recent time state overrides any older rule, independently of which of the
two agents these rules belong to. Motivation for this prevalence mode can be
found in [18]. The function specifying this mode is defined as follows:

ftp

(
αj , αk, , t, ,

)
= {+(αj

t−1, α
k
t),+(αk

t−1, α
j
t)}

Example 2. Consider the programs U1 = {add prevail mode αj ftp←→ αk}. The
transition from time states i − 1 to i is represented in the following Figure:

The previous function only makes time prevail after being issued. We may
want a function that also sets the past to the same time prevalence mode. Such
function would be:

fatp

(
αj , αk, , t, ,

)
= {+(αj

p−1, α
k
p),+(αk

p−1, α
j
p) : 1 < p ≤ t}

Hierarchy Prevalence: According to this prevalence mode, any rule in-
dexed by a higher ranked agent overrides any lower ranked agent’s rule, starting
when both the prevalence mode and the hierarchy between the two agents are
set. Motivation for this prevalence mode can be found in [18].

fhp

(
αj , αk, <, t, n,m

)
= {+(αj

t , α
k
p) : p = max(n,m), 0 < p < t}∪

∪ {−(αj
t−1, α

k
p) : p = max(n,m), 0 < p < t − 1}

fhp (, ,=, , ,) = {}

Note that if there is no hierarchical relation between the two agents, no edges
are added nor removed.

Example 3. Consider the following program:

U1 = {add prevail mode αj fhp←→ αk;add hierarchy edge αj → αk}
Ui−2 = {remove hierarchy edge αj → αk;add hierarchy edge αk → αj}

12 João Alexandre Leite et al.

The transition from time states i− 1 to i is represented in the following Figure:

At this stage, where the general MLUPS language has been defined, we can
come back to the Example of the Introduction.

Example 4. Consider the following simplified update history for Example 1, and
corresponding MLUPS program. Lack of space prevents us from elaborating the
example further.

At the start I consider that myself is higher in the hierarchy than the advis-
ers, that hierarchy prevails, and that the advisers are related by a time prevalence
mode. Moreover reality is the highest in the hierarchy. This can be easily coded
in MLUPS, and is omitted for brevity. Then, at time 2, I add to myself a rule
stating that I’m willing to risk if I have lots of money. Moreover, adviser1 tells
me to buy bonds, and whenever there is a bull market adviser2 tells me that, in
a bull market situation, his advice is then to buy stocks, and not to buy bonds:

assert (risk ← money)@myself
assert buy(bonds)@adviser1
always (buy(stocks) ← bull)@adviser2 when bull@reality
always (not buy(bonds) ← bull)@adviser2 when bull@reality

The reader can check that, at this point, buy(bonds) holds at myself .
At time 3, I’m informed that there is a bull market: assert bull@reality.

Now, buy(stocks) and not buy(bonds) both hold.
At time 4 I decide to change my priorities, impose a hierarchical relation

where adviser1 is higher than adviser2, and consider, from now on, that hier-
archy should prevail. This can be accomplished by giving the commands (where
fhp is as defined in page 11):

add hierarchy edge adviser2 → adviser1

add prevail mode adviser2
fhp←→ adviser1

Moreover, adviser1 tells me that, if I’m not willing to risk, I should definitely
not buy stocks: assert (not buy(stocks) ← not risk)@adviser1. At this point
both not buy(stocks) and not buy(bonds) hold.

Suppose that at time 5 I receive lots of money: assert money@myself . As
expected, buy(stocks) and not buy(bonds) hold.

Finally, at time 6, I’m informed that there is no longer a bull market:
assert not bull@reality. Accordingly, both buy(bonds) and not buy(stocks) now
hold.

A Language for Updates with Multiple Dimensions 13

4 Concluding Remarks

We have presented MLUPS, a language for specifying dynamic and multi-dimen-
sional updates in non-monotonic agents knowledge bases. These are represented
by generalized logic programs allowing default negation in rule heads. We pro-
vided a declarative semantics for the language, by translating MLUPS pro-
grams into sequences of logic programs, whose semantics is determined by multi-
dimensional dynamic logic programming MDLP. Though not described here,
we have also implemented the core MLUPS language, with a fixed hierarchy
prevalence mode, and enriched it with the capability to dynamically change the
hierarchy DAG. The implementation is available from the authors.

Over recent years, the notion of agency has claimed a fundamental role in
defining the trends of contemporary research, virtually invading every sub-field
of Computer Science [13]. Although commonly implemented by means of im-
perative languages, mainly for reasons of efficiency, the agent concept has more
recently increased its influence in the research and development of computa-
tional logic based systems. Since efficiency is not always the crucial issue, but
clear specification and correctness is, Logic Programming and Non-monotonic
Reasoning have been brought back into the spotlight [3, 24]. To this accrues the
recent significant improvements in the efficiency of Logic Programming imple-
mentations for Non-monotonic Reasoning (e.g. [22, 27, 5]). Besides allowing for
a unified declarative and procedural semantics, eliminating the traditional wide
gap between theory and practice, the use of several and quite powerful results
in the field of non-monotonic extensions to LP, such as belief revision, induc-
tive learning, argumentation, preferences, abduction, etc.[24] can represent an
important composite added value to the design of rational agents.

The language MLUPS is at the core of an agent architecture [19] conceived
with the intention of providing, on a sound theoretical basis, a common agent
framework based on the strengths of Logic Programming, so as to allow the com-
bination of such non-monotonic knowledge representation and reasoning mecha-
nisms developed in recent years. Rational agents, in our opinion, will require an
admixture of any number of those reasoning mechanisms for carrying out their
tasks.

Our language for updates of logic programs borrows from and is closely re-
lated to action languages, which can be translated into logic programs (cf. [10]),
but extends them to multiple dimensions and agents. A change to the knowledge
base may be considered as an action, where the execution of actions may depend
on other actions and conditions. However, the two approaches are significantly
different, even in the single dimension single agent case. Indeed, action languages
are tailored for planning and reasoning about actions, rather than for update
specification, and actions are restricted to sets of literals (fluents) rather than
representing updates of sets of rules or logic programs.

In [19] we relate our architecture, and to some extent MLUPS, with the
somehow related approaches of [11, 8, 25].

A deeper study of applications of MLUPS is the subject of ongoing and
future work. Namely, bridging the gap between knowledge updates and reasoning

14 João Alexandre Leite et al.

about actions, applying MLUPS as a language for combining knowledge and
beliefs in multi-agent systems (e.g. combining different e-commerce policies),
applying knowledge update methodology to the domain of software engineering
for software maintenance and verification of program correctness.

We have also studied the combination of MLUPS with other extensions of
LUPS, such as the specification of updates conditional on external events [6],
and the nesting of update commands. Results on these subjects can be found in
[16].

We believe MLUPS has an enormous potential begging to be tapped, and
opens up new vistas for the logic programming approach to distributed dynamic
knowledge change.

Acknowledgment The authors acknowledge the support of FCT project 40958
“FLUX - FleXible Logical Updates”.

References

1. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski.
Dynamic updates of non-monotonic knowledge bases. Journal of Logic Program-
ming, 45(1-3):43–70, 2000. Abstract titled Dynamic Logic Programming appeared
in Procs. of KR-98.

2. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS : A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.
Short version appeared in Procs of LPNMR-99, LNAI-1730.

3. M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi, and F. Zini. Logic program-
ming and multi-agent system: A synergic combination for applications and seman-
tics. In The Logic Programming Paradigm - A 25-Year Perspective. Springer, 1999.

4. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In Procs. of ICLP-99. MIT Press, 1999.

5. DLV. The DLV project - a disjunctive datalog system (and more), 2000. Available
at http://www.dbai.tuwien.ac.at/proj/dlv/.

6. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Procs of IJCAI’01. Morgan Kaufmann,
2001.

7. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2002. To
appear.

8. M. Fisher. A survey of concurrent METATEM: The language and its applications.
In Procs of ICTL’94, volume 827 of LNAI. Springer, 1994.

9. M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In Procs.
of ICLP-88. MIT Press, 1988.

10. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on AI,
3(16), 1998.

11. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. C. Meyer. Formal semantics
for an abstract agent programming language. In Procs of ATAL’97, volume 1365
of LNAI. Springer, 1998.

12. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35:39–78, 1998.

A Language for Updates with Multiple Dimensions 15

13. N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

14. H. Katsuno and A. Mendelzon. On the difference between updating a knowledge
base and revising it. In Procs. of KR-91. Morgan Kaufmann, 1991.

15. J. A. Leite. A modified semantics for LUPS. In Procs of EPIA’01, volume 2258 of
LNAI, pages 261–275. Springer, 2001.

16. J. A. Leite. Evolving Knowledge Bases – Specification and Semantics. PhD thesis,
Universidade Nova de Lisboa, July 2002. To be published by IOS Press.

17. J. A. Leite, J. J. Alferes, and L. M. Pereira. Multi-dimensional dynamic knowledge
representation. In Procs. of LPNMR-01, volume 2173 of LNAI. Springer, 2001. A
preliminary version appeared in Procs. of CLIMA-00.

18. J. A. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional
dynamic logic programming to represent societal agents’ viewpoints. In Procs of
EPIA’01, volume 2258 of LNAI, pages 276–289. Springer, 2001.

19. J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In J. J. Meyer and M. Tambe, editors, Intelligent Agents VIII
— Procs. of ATAL’01, volume 2333 of LNAI. Springer, 2002.

20. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In Procs. of KR-92. Morgan-Kaufmann, 1992.

21. Victor W. Marek and Miros"law Truszczyński. Revision programming. Theoretical
Computer Science, 190(2):241–277, 20 January 1998.

22. I. Niemelä and P. Simons. Smodels: An implementation of the stable model and
well-founded semantics for normal LP. In Procs. of LPNMR’97, volume 1265 of
LNAI. Springer, 1997.

23. T. C. Przymusinski and H. Turner. Update by means of inference rules. Journal
of Logic Programming, 30(2):125–143, 1997.

24. F. Sadri and F. Toni. Computational logic and multiagent systems: A roadmap,
1999. Available from http://www.compulog.org.

25. V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus, Fatma
Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press/AAAI Press,
2000.

26. Marianne Winslett. Reasoning about action using a possible models approach. In
Procs. of NCAI-88. AAAI Press, 1988.

27. XSB-Prolog. The XSB logic programming system, version 2.0, 1999. Available at
http://www.cs.sunysb.edu/ sbprolog.

A Background

Object language: Following the tradition of [1, 2, 17], we will use generalized
logic programs (GLP) which we briefly recapitulate here4.

By a generalized logic program P in a language L we mean a finite or infinite
set of propositional clauses of the form L0 ← L1, . . . , Ln where each Li is a
literal (i.e. an atom A or the default negation of an atom not A). If r is a clause
4 The class of GLPs (i.e. logic programs that allow default negation in the premisses

and heads of rules) can be viewed as a special case of yet broader classes of programs,
introduced earlier in [12] and in [20], and, for the special case of normal programs,
their semantics coincides with the stable models semantics [9].

16 João Alexandre Leite et al.

(or rule), by H(r) we mean L0, and by B(r) we mean L1, . . . , Ln. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). By a (2-
valued) interpretation M of L we mean any set of literals from L that satisfies
the condition that for any A, precisely one of the literals A or not A belongs
to M . Given an interpretation M we define M+ = {A : A is an atom, A ∈ M}
and M− = {not A : A is an atom, not A ∈ M}. Wherever convenient we omit
the default (negative) atoms when describing interpretations and models. Also,
rules with variables stand for the set of their ground instances. We say that a
(2-valued) interpretation M of L is a stable model of a generalized logic program
P if ξ(M) = least (ξ(P) ∪ ξ(M−)), where ξ(.) univocally renames every default
literal not A in a program or model into new atoms, say not A. In the remaining,
we refer to a GLP simply as a logic program (or LP).

Graphs: A directed graph, or digraph, D = (V,E) is a pair of two finite or
infinite sets V = VD of vertices and E = ED of pairs of vertices or (directed)
edges. A directed edge sequence from v0 to vn is a sequence of edges e1, e2, ..., en ∈
ED such that ei = (vi−1, vi) for i = 1, ..., n. A directed path is a directed edge
sequence in which all the edges are distinct. A directed acyclic graph, or acyclic
digraph (DAG), is a digraph D such that there are no directed edge sequences
from v to v, for all vertices v of D. We say that v < u if there is a directed
path from v to u and that v ≤ u if v < u or v = u. A labelled digraph is a
digraph where a label is associated with each edge. For simplicity, we represent
such edges by triples of the form (vi, vj , w) where vi, vj ∈ V and w is the label of
the edge. Labels are elements of some predefined set (e.g. natural numbers). All
other notions defined above follow if we consider the digraph obtained from the
labelled digraph by replacing each labelled edge (vi, vj , w) by the edge (vi, vj).

Multi-dimensional Dynamic Logic Programming: MDLP [17] is a
generalization of DLP inasmuch as it allows for collections of states organized
by arbitrary acyclic digraphs, and not just sequences of states, therefore as-
signing semantics to sets and subsets of logic programs, on the basis of how
they stand in relation amongst each other, as defined by an acyclic digraph. A
Multi-dimensional Dynamic Logic Program (MDLP), P, is a pair (PD,D) where
D = (V,E) is a DAG and PD = {Pv : v ∈ V } is a set of generalized logic pro-
grams in the language L, indexed by the vertices v ∈ V of D. We call states such
vertices of D. For simplicity, we often leave the language L implicit.

Definition 12 (Stable Models at a set of states S). Let P = (PD,D) be a
MDLP, where PD = {Pv : v ∈ V } and D = (V,E). Let S be a set of states such
that S ⊆ V . An interpretation M is a stable model of P at the set of states S
iff M = least ([ρ (P)S − Rej(S,M)] ∪ Default (S,M)), where:

ρ (P)S =
⋃

s∈S

(⋃
i≤sPi

)

Rej(S,M) = {r ∈ Pi | ∃s ∈ S,∃r′ ∈ Pj , i < j ≤ s, h(r) = not h(r′) ∧ M ! b(r′)}
Default (S,M) = {not A | !r ∈ ρ (P)S : (h(r) = A) ∧ M ! b(r)}

If some literal or conjunction of literals φ holds in all stable models of
⊕

P at
the set of states S, we write

⊕
S P |= φ. If S = V we simply omit the reference

and write
⊕

P |= φ. If S = {s} we write
⊕

s P |= φ.

