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Abstract

In this paper we present a logic language for the integration of different data sources.
The language extends Datalog with several constructs such as nondeterministic choice, set
constructors and aggregates. The use of an (extended) Datalog program for the integration
of different data sources allows performing the merging process in a more flexible way with
respect to the use of predefined operators, already defined in the literature. More specifically
the extending Datalog language enables to perform the database integration by writing ad hoc
operators reflecting the real user needs. Due to its specific features, the proposed extended
language permits to easily implement most of the integration techniques already defined in
the literature and can be profitable used to define more general techniques.
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1 Introduction

Data integration is the activity of constructing a unified integrated (either virtual or material-
ized) view of data from heterogeneous information sources which were designed independently
for autonomous applications and whose contents are strictly related. This activity plays a key
role in several areas such as data warehousing, database integration, automated reasoning sys-
tems, active reactive databases and so it has been deeply investigated especially in the areas
of databases and artificial intelligence. However, the database obtained from the integration
of multiple autonomous information sources could contain inconsistent data, i.e. data which
violate integrity constraints. The following example shows a typical case of inconsistency.

Example 1 Consider the database consisting of the single binary relation Teaches(Course,
Professor) where the attribute Course is a key for the relation. Assume there are two differ-
ent instances for the relations Teaches: Dy = {Teaches(ci,p1), Teaches(ca, p2)} and Dy =
{Teaches(c1,p1), Teaches(ca, p3)}.

The two instances satisfy the constraint that Course is a key, but from their union we derive
a relation which does not satisfy the constraint since there are two distinct tuples with the same
value for the attribute Course. O

Thus the integration of, possibly inconsistent, databases must consider the possibility of con-
structing an integrated consistent database by replacing inconsistent tuples. For instance, for
the integrated relation of the above example, it is possible to obtain a consistent database by
replacing the two inconsistent facts Teaches(co, p2) and Teaches(ca, p3) with a tuple containing
the certain information such as i) T'eaches(cz, L), where the null value | means that we don’t
know who teaches course cg, or ii) the nested tuple T'eaches(ca, {p2, ps}), stating that course cz
is taught by a professor in the set {p2,p3} or iii) Teaches(ce,p2) (resp. Teaches(ce,ps3)), which
means that in the integrated database we give credit to the information coming from D; (resp.
D,).

In this paper we propose a general framework for the integration of databases and next
present the logic languages supporting the integration phase. More specifically, the integration
of databases consists of two steps: in the first one the different values of each attribute of
tuples, related to the same concept, are collected into a complex term, and in the second one
the complex term is replaced by a simple term whose value is computed by means of some
polynomial function applied to the complex term.

The integration framework can be easily implemented by means of a logic language obtained
by extending Datalog with set constructors, aggregates, nondeterministic choice. Moreover, the
use of an (extended) Datalog program for integrating databases makes the merging process more
flexible with respect to the use of predefined operators defined in the literature since it gives us
the possibility to write ad hoc operators, (“business rules”), reflecting the real user needs.

Example 2 Consider the database consisting of the single binary relation Employee(Name,
Age, Salary) where the attribute Name is a key for the relation. Assume there are two different
instances for the relations Employee: Dy = { Employee(Mary, 28,20000), Employee(Peter, 47,
50000)} and Dy = {Employee(Mary,31,30000), Employee(Peter,47, 40000)}.

The use of a stratified logic program allows merging such relations, satisfying preference
criteria for each attribute. For example, if we suppose certain the information over attribute
Age provided by Di, in case of conflicts we can give preference to values of Age supplied by



Dy. Anyhow, we can adopt a different strategy for the attribute Salary such as considering the
average value of those provided by the two sources. In this case the result of the integration
consists of the tuples { Employee(Mary, 28,25000), Employee(Peter, 47,45000)}. O

The rest of the paper is as follows. In Section 2, we present basic definition of logic pro-
gramming and Datalog. In Section 3, we define the database integration problem considered in
this paper. In section 4, we present an extension of Datalog with sets, bags and list construc-
tors, aggregate functions and functions for the nondeterministic selection of an element from a
complex term. In Section 5, we show that our language can be specialized to capture most of
the integration techniques defined in the literature and also to express more general integration
techniques.

2 Basic Notions

We assume the existence of finite domains of constants, variables, function symbols and predicate
symbols. We also assume the existence of a particular constant | denoting a null value. A term
is either a variable, a constant or a structure of the form f(¢1, ..., t,,) where f is a function symbol
and ¢y, ..., ty, are terms. An atom is of the form p(tq,...,%,) where p is a predicate symbol and
t1,...,ty are terms. A literal is either an atom A or its negation —A. A logic program (or, simply,
a program) P is a finite set of rules. Each rule of P has the form A + Ay,..., A,, where A is
an atom (the head of the rule) and Ay, ..., A,, are literals (the body of the rule). A rule with an
empty body is called a fact.

Given a logic program P, the Herbrand universe for P, denoted Hp, is the set of all possible
ground terms recursively constructed by considering constants and function symbols occurring
in P. The Herbrand Base of P, denoted Bp, is the set of all possible ground atoms whose
predicate symbols occur in P and whose arguments are elements from the Herbrand universe.
A ground instance of a rule r in P is a rule obtained from r by replacing every variable X in r
by a ground term in Hp. The set of ground instances of r is denoted by ground(r); accordingly,
ground(P) denotes |J,cp ground(r). An interpretation I of P is a subset of Bp. A ground
positive literal A (resp. negative literal —=A) is true w.r.t. an interpretation I if A € I (resp.
A ¢ I). A conjunction of literals is true in an interpretation I if all literals are true in 1. A
ground rule is true in I if either the body conjunction is false or the head is true in 1. A
(Herbrand) model M of P is an interpretation that makes each ground instance of each rule in
P true. A model M for P is minimal if there is no model N for P such that N C M.

Let I be an interpretation for a program P. The immediate consequence operator Tp(I) is
defined as the set containing the heads of each rule r € ground(P) s.t. the body of r is true in I.
The semantics of a positive (i.e. negation-free) logic program P is given by the unique minimal
model; this minimum model coincides with the least fixpoint T3°(0) of Tp [19]. Generally, the
semantics of logic programs with negation can be given in terms of total stable model semantics
[10] which we now briefly recall.

Given a program P and an interpretation M, M is a (total) stable model of P if it is the
minimum model of the positive program P defined as follows: PM is obtained from ground(P)
by (i) deleting all rules which have some negative literal —b in their body with b € M, and (ii)
removing all negative literals from the remaining rules. Logic programs may have zero, one or
several stable models. Positive programs have a unique stable model which coincides with the



minimum model [10].

Given a program P and two predicate symbols p and ¢, we write p — ¢ if there exists a rule
where ¢ occurs in the head and p in the body or there exists a predicate s such that p — s and
s = q. A program is stratified if there exists no rule where a predicate p occurs in a negative
literal in the body, ¢ occurs in the head and ¢ — p i.e. there is no recursion through negation
[1]. Stratified programs have a unique stable model which coincides with the stratified model,
obtained by partitioning the program into an ordered number of suitable subprograms (called
'strata’) and computing the fixpoints of every stratum from the lowest one up [1].

A Datalog program is a logic program without function symbols. The Herbrand universe and
the Herbrand base of Datalog programs are finite. Datalog programs may have zero, one or
several finite stable models. Generally, predicates are partitioned into extensional, defined by a
set of ground facts, and intensional, defined by rules and we distinguish between database and
program: the database consists of the set of facts defining extensional predicates whereas the
program consists of the set of rules defining intensional predicates. In the following, given a
database D and a Datalog program P, Pp denotes the Datalog program consisting of the rules
in P plus the facts defining the database D.

3 The Database Integration Problem

The process of integrating data from different sources is carried out performing two main yet
complementary steps: a first one which consists in the merging of the various relations and a
second one in which the possibly inconsistent database is repaired by removing or inserting a
minimal set of tuples so that it finally satisfies integrity constraints. Before formally introducing
the database integration problem let us introduce some basic definitions and notations.

Let R be a relation name, then we denote by: i) attr(R) the set of attributes of R, ii) key(R)
the set of attributes in the primary key of R, iii) fd(R) the set of functional dependencies of
R, and iv) inst(R) the instance of R (set of tuples). Given a tuple ¢t € inst(R), key(t) denotes
the values of the key attributes of ¢ whereas, for a given database D, fd(D) denotes the set of
functional dependencies of D and inst(D) denotes the database instance.

We assume that relations associated with the same class of objects have been homogenized
with respect to a common ontology, so that attributes denoting the same concepts have the same
name [25]. We say that two homogenized relations R and S, associated with the same concept,
are overlapping if key(R) = key(S). In the following we assume that relations associated with
the same class of objects have the same primary key.

The database integration problem is as follows: given n databases D1 = {Ri1,..., Ri x}, ..., Dy, =
{Rn1, ..., Ry 1}, computes a database D = {T7, ..., T} }, where each Tj is derived from Ry ;,... R, j
and Ry j,...R, j refer to the same class of objects. Thus, the database integration problem con-
sists in the integration of n relations Ry j,...Ry, ; into a relation T; by means of a merge (binary)
operator ¢, i.e. T; = Ry ;o ..o R, ;. In the following we assume that each database D; is
identified by a unique index 7, with 1 < 7 < n and n denoting the number of databases to be
merged. As usual, we use the symbol > to denote the join operator.

Definition 1 Given two relations R and S such that attr(R) C attr(S) and two tuples ¢; €
inst(R) and ty € inst(S), we say that ¢ is less informative than to (1 < t2) if for each attribute



a in attr(R), t1[A] = t2[A] or t1[A] =L, where L denotes the null value. Moreover, given two
relations R and S, we say that R < S if V1 € inst(R) Jty € inst(S) s.t. 1 < to. O

Definition 2 Let R and S be two relations, a binary operator ¢ such that:

L. attr(R ¢ S) = attr(R) U attr(S);

2. RS K Ro S,

3. RoS=S¢R (commutativity);

4. (RoS)oR=(RoS)oS=RoS (idempotency).

is called merge operator. Moreover, a merge operator ¢ is said to be

e lossless if, for all R and S, R< (R¢ S) and S < (R¢ S);
e dependency preserving if, for all R and S, is (R¢ S) = (fd(R) N fd(S));
e associative if, (R0 S)oT = Ro(SoT). O

Note that integrating more than two relations by means of a not associative merge operator, may
give different results, if we apply the merge operators in different orders. Thus, the associative
property is desirable, but several operators defined in the literature do not satisfy such a property.

In order to compare different merge operators we introduce the following definition.

Definition 3 Given two lossless merge operators ¢; and o9, we say that ¢ is

e content preferable to oo (01 <¢ ©2) if, for all R and S, |[R o1 S| < |[R o2 S|, and

e dependency preferable to o9 (01 <pp ©9) if, for all R and S, the number of tuples in
(R o1 S) which violate the fd(R) N fd(S) are less than the number of tuples in (R o3 S)
which violate the fd(R) N fd(S). O

The idea through which performing the database integration consists in organizing the col-
lection of tuples with the same value for the key attributes into a ‘nested’ tuple. In particular,
given a set of n conflicting tuples (11, ..., t1,m), .-, (tn,1, ---s tn,m), the technique we propose, first
replaces the n tuples having arity m, with a tuple (fi({t1,1, ..., tn,1}), s fin({E1my o tnm})),
where f; is a polynomial function which is applied to a set of n elements and returns a (‘com-
plex’) term for each set; and next uses a polynomial function, g, to combine the complex terms
into the output standard tuples.

It is worth nothing that before collecting tuples with the same value for the key attributes,
the relations to be merged must be first reconciled so that they have the same schema and the
same set of key values.

Definition 4 Let Sy,..., S, be a set of overlapping relations, K be the key of the relations, then

the set of reconciled relations S, ..., S), is such that the generic S! is defined as follows:

e the schema contains all attributes of all homogenized relations, i.e. attr(S}) = U?:1 attr(Sj),

e the instance is constructed as follows:



— it contains all tuples ¢ € S; completed with L for all attributes belonging to attr(S]) —
attr(S;);

— Vt' € S; with j # i such that there is no tuple t" € S; with ¢'[K] = t"[K], it
contains a tuple ¢ consisting of ¢[{K] completed with L for all attributes. belonging
to attr(S)) — K O

Observe that 7x(S;) = 7w (S}); moreover, if Si,..., S, are consistent, then |Si| = |S}| =
(7K (S7)] = |7 (S7)], for all i # 5.

Example 3 Consider the following three overlapping relations Sy, Se and Sj3:

Name | City | Salary
]\C;C;Z;e Alc)i;f;n Slcéloaorg Greg NY | 25000 Name | Dept | Salary
Jones | Sales | 20000 Jones | WA | 20000 Greg | Sales | 20000
Smith | Sales 1 Taylor | WA | 30000 Jones | Sales | 30000
Smith | WA | 25000 Ss
Sy S,

The homogenized relations S7, S% and S5 associated to S, Sz and S3 are:

Name | Dept | City]|Salary Name | Dept | City | Salary Name | Dept | City | Salary
Greg |Admin| 1 | 10000 Greg L NY | 25000 Greg | Sales| L | 20000
Jones | Sales | L | 20000 Jones | L | WA | 20000 Jones | Sales| L | 30000
Smith | Sales | L 1 Smith | L WA | 25000 Smith L L 1
Taylor 1 1 1 Taylor | L WA | 30000 Taylor L L 1
5] : 5,

In the following, for the sake of simplicity, we assume that source relations are consistent,
although the extension for not consistent relations is trivial as we shall see in Example 5.

Let Sy,...,S, be a set of consistent reconciled relations with key attributes K and let T' =
S1U...US,. Let k be a key value in wx(T), then T* = [t1, ..., 1,] denotes the list of tuples in T
with key k such that ¢; € S; and is called cluster with key value k.

Definition 5 A merge function f is a polynomial function operating on a set of reconciled
relations Sy, ..., S, producing a new set of tuples R = f(S1, ..., Sy,) such that

1. attr(R) = Ujattr(S;);

2. Sy S, K f(S1 e, Sh);

3. S; < f(S1,...,Sp) for all i;

4. g (R) = i (S1 U...US,) where K is the key of Sy, ..., S),.

Moreover, we say that f is decomposable if it can be applied to the different clusters of

S1U...US, =T, ie. R=f(TF)U...U f(T*), where {ki,...,km} = mx(T) is the set of keys
inT. O

In the following we only consider decomposable functions so that guaranteeing that tuples in
different clusters are not ‘combined’ to produce new tuples.



Definition 6 Let Sy, ...,.S, be a set of consistent reconciled relations with schema (K, Ay, ..., Ay,)
and key K. Then, every decomposable integrating function f operating on a cluster T% of
T =51U..US,, can be decomposed into m + 1 polynomial functions fi, ..., fin, g such that

o F(T%) = g({(k, 1(L1), - fn(Lm))) with Li = [SF, ..., S§] = [74,(S1), s T, (Sn)]; Vi,
e |fi(L;)| <|Lji|, Vi, and

e g operates on nested tuples and gives, as result, a set of standard tuples (integrated
relation), such that |g(T%)| < |L1 X ... X L. O

Moreover, a generic f; is said to be canonical if the following properties hold:

o f([L,.., L)) =1,
e f(L) = z if z is the unique not null value in L.
Example 4 Consider the reconcilied relations Sj, S, and S introduced in the Example 3.

Applying a generic merge function, the general template of the integrated relation is of the
following type:

Name : Dept Clity Salary
Greg | fi([Admin, L,Sales]) | F2([LNY,L]) | /5([10000,25000,20000])
Jones | fi([Sales, L Sales]) | fo([L,WA.L]) | £2([20000,20000,30000])
Smith f1([Sales, L, 1]) f2([L, WA, 1]) f3([L,25000,L])
Taylor fl([J-aJ—aJ-]) f2([J- WA J—]) fB([J-73OOOO>J-])
T
Assuming that each f; is a canonical function the template can be simplified as follows:
Name : Dept Clity Salary
Greg | Ji([Admin, L,Sales]) | NY | f5([10000,25000,20000])
Jones Sales WA | f3([20000,20000,30000])
Smith Sales WA 25000
Taylor L WA 30000
T

In the following example we informally show that our framework can be extended to consider
inconsistent source relations.

Example 5 Consider the following two overlapping relations S and Ss:

Name : | Dept | Salary Name : | City | Salary
Greg | Admin | 10000 Greg NY | 25000
Greg Sales | 20000 Smith | WA | 20000

Smith | Sales 1 Smith | WA | 25000
Sy S

After fixing an order on the tuples of the two input relation we get the following template
relation:

Name : Dept City Salary
Greg | fi(JAdmin,Sales,L]) | NY | f3([10000,20000,25000])
Smith Sales WA | f3([L,20000,25000])
T

Several merge operators have been proposed in the literature [5, 18, 25]. All these operators
can be defined as special cases of the above framework through the instantiation of the functions
g and f; as we’ll be shown next.



4 A Logic Language for Database Integration

In this section we show that the integration of relations can be easily implemented by means of
a logic language obtained by extending Datalog with several constructs such as nondeterministic
choice, set constructors and aggregates. In particular, we firstly show that the extended Datalog
language, due to its specific features, allows expressing most of the relevant merging techniques
proposed in the literature and next show that, logical rules define a powerful mechanism to
implement more general integration techniques.

In order to manage complex terms we extend the Datalog language by introducing complex
terms such as sets, bags and lists; moreover, we also introduce standard SQL functions which are
applied to complex terms and a nondeterministic function which selects (nondeterministically)
one element from a complex term.

Bags and sets

A (ground) bag term S is of the form {si,...,s,}, where s; (1 < j < n) is a constant and the
sequence in which the elements are listed is immaterial. Moreover, a bag term {si,...,s,} is
called set term if the number of occurrences of every s;, for 1 < j <n, is immaterial. Thus, the
three sets {a, b}, {b,a} and {b, a, b} coincide, while the two bags {a, b} and {b,a, b} are different.

We point out that the enumeration of the elements of a set term can be given either directly
or by specifying the conditions for collecting their elements (grouping variables). Grouping
variables may occur in the head of clauses with the following format

p(xla s Ty <Y1y ooy <Yy LYk4122 20, <<ym>>) <~ Bla H) Bn

where By, ..., B, are the goals of the rules, p is the head predicate symbol with arity h + m, y;
for 1 < i < m, is a grouping variable, and z1, ...,z are the other arguments (terms or other
grouping variables). To the grouping variable <Y > (resp. <Y >) will be assigned the bag
(resp. set) {Y'0 | 6 is a substitution for r such that B0, ..., B,0 are true}. A grouping variable
is similar to the construct GROUP BY of SQL.

Example 6 Consider the database D consisting of the following facts
q(a,2,x). q(a,3,y). q(b,4,x). q(b,7,y). q(b,4,2z).

and the program P consisting of the rule:
p(X, <¥>) & q(X,¥,7)

The program Pp has only one minimal model: M = DU{p(a, {2,3}),p(b,{4,7,4})}. Moreover,
by replacing the bag constructor with the set constructor we get the rule:

p(X, <Y>) + q(X,Y)

The new program has only one minimal model: M = D U {p(a,{2,3}),p(b,{4,7})}. O

In the following we assume that programs with sets and bags constructors do not appear
inside recursive predicates.



Aggregate functions

Beside sets and bags, we also consider built-in aggregate functions, such as min, maz, count,
sum and avg which are applied to sets and bags.

Definition 7 An aggregate term is of the form f(S) where S is a grouping variable and f €
{min, maz, count, sum,avg} is an aggregate function. O

Note that since grouping variables may only occur in the head of rules, aggregate terms only
occur in the head of rules too. Observe that min(<KS>) = min(<S>) and maz(KS>) =
mazx(<S>).

Example 7 Consider the database D of the previous example and the program P consisting
of the following rules

P1 (Xa <Y>)

p2(X, KY>))
p3(X,min(<Y>))
pa(X, max(<Y>))
ps (X, count(<Y>))
Pe(
pr(
Ps(
Ps(

e R R e e R R R e
NNNNNNNNNN

X, count (KY>))

X, sum(<Y>))

X, sum(<KY>>))

X, avg(<Y>))
p1o(X, avg(KY>))

TTTTTTTTTT
2:2.08.2.0.0,9.,9.9.9
laRaRaRaRaRaRaRaRaRel

The evaluation of the above rules gives the following facts:

pl(aa{2a3})a Pl({4,7})

p2(aa{233})a p2({4a7a4})a

pS(aa 2)7 pS(ba 4)a

p4(a7 3)7 p4(b7 7)7

p5(a7 2)7 p5(b7 2)7

pG(aa 2)7 pﬁ(ba S)a

p7(aa 5)7 p7(ba ll)a

pS(aa 5)7 pS(ba 15)a

pg(a, 2'5)7 P9(ba 5'5)7

P1o(a,2.5), P1o(b,5). 0

Nondeterministic predicates: list constructor and choice

A (bounded) list term L is a term of the form [sq, ..., s,], where s; (1 < j <n) is a constant. We
shall use the standard notation and the standard cons operator so that a not empty list can be
denoted by [X|L] where X is the head of the list and L is the tail; the empty list is denoted by
[]. We also assume the existence of a list constructor which may occur in the head of clauses.
Basically a list constructor is of the form <Y > and its semantics is that the elements in the
bag <Y >> are ordered with respect to the values of I. Clearly, the variable I must take values
from a linearly ordered domain and the result may be nondeterministic since there could be
more than one possible orderings.



Example 8 For the database of the previous example, the rule
P(X, <Z>y) - q(X,Y,2)

computes two facts: p(a, [z,y]) and either p(b, [z, z,y]) or p(b, [z, x,y]). The rule
P(X, <Y>z) - q(X,Y,2)

computes two facts: p(a, [2,3]) and p(b, [4,7,4]). O

The list constructor is similar to the built-in predicate bagof of PROLOG. As for sets and bags,
we assume that the list constructors do not appear inside recursive rules and that aggregates
functions can also be applied to lists.!

Other than classical aggregate operators, we also consider a nondeterministic function, called
choice, which selects nondeterministically one element from a set, bag or list. A choice term is
of the form choice(S) where S is a grouping variable. Clearly, choice(<S>) = choice(<KS>) =
choice(KS>).

Example 9 Consider the database D of Example 6 and the program P consisting of the fol-
lowing rule:

p(X, choice(<Y>)) < q(X,Y,Z)

The program has four alternative minimal models: M; = {p(a,2),p(b,4)}, My = {p(a,2),p(b,7)},
M3 = {p(a’a 3),p(b, 4)} and My = {p(aa?’)ap(ba 7)} 0

We also assume the existence of the standard predicates member(X, L) where X is a variable
or constant and L is a ground set, bag or list [26]; the predicates assigns to X the elements in
the ground term L.

5 Database Integration

The use of an (extended) Datalog program for database integration allows performing the merg-
ing process in a more flexible way with respect to the use of predefined operators, already defined
in the literature [25]. In fact, due to its specific features, the extending Datalog language here
proposed enables to perform the database integration by writing ad hoc operators reflecting the
real user needs.

The specialization of the functions f; and g permits us to express most of the integrating
techniques and operators defined in literature. For instance, the merging by majority technique
[17] is obtained by specializing all f; to select the element which occurs a maximum number of
times in the set. In other case the function f; computes a value such as the maximum, minimum,
average, etc. Thus, we assume here that the function g returns the set of tuples which can be
constructed by combining the values supplied by f; functions in all possible ways.

For the following, we assume that the input relations Si,..., S, are stored by means of a
global set of facts with schema (i, k&, eq,...,ey), where i denotes the input relation, & is the set
of attributes corresponding to a key and ey, ...e,, are the remaining attributes.

!Lists are basically ordered bags.



The following program computes a relation f integrating a set of relations Sy, ..., Sp.

allAtt(K,<<E1>>1,...,<<Em>>1) — S(IaKaEla'“aEm)-
f(K,El,...,Em) — allAtt(K,Ll,...,Lm),fl(Ll,El),..., fm(Lm,Em) .

Here the predicate f; (for all 1 <14 < m) receives in input a list of elements L; and returns an
element F; which is used to build output tuples.

Example 10 The content of the predicate all Attr for the homogenized relations S7, S5 and S§
of Example 3 is the following

Name : Dept City Salary
Greg [Admin, L ,Sales] | [L,NY, L] | [10000,25000,20000]

Jones [Sales, L Sales] | [L,WA,L] | [20000,20000,30000]
Smith |  [Sales,L,1] | [L,WA,L] [1,25000, ]
Taylor [L,L1,1] [L,WA, 1] [1,30000,L]

The body of the second rule implements the different functions f;. The predicates f; returns a
value; the combination of the different values is used to construct the output tuple. O

The specialization of the predicates fi, ..., fin allows to easily implement different merge op-
erators, such as the “Merging by majority”, the “merge” and the “prioritized merge” operator.
Moreover, since all predicates have the same behavior, we shall use a unique predicate called
mergeAttr.

Merging by majority

In [18], the aim of obtaining a new relation which is consistent with the integrity constraint is
carried out by using an an approach that takes into account the majority view of the knowledge
bases if conflicts arises. In order to solve conflicts arising during the merge task, an operator is
defined, which takes the majority view for conflicting values.

The “merging by majority” technique, proposed by Lin and Mendelson, tries to remove the
conflicts maintaining the (not null) value which is present in the majority of the knowledge bases.
However, this approach could fail when, for a field there is not the majority of databases agreeing
on a value and, therefore, it is not possible to choose among different alternative values. In this
case, for each of this field, a set of possible values is associated in the integrated databases. The
formalization as logic program is the following:

mergeAttr(L, L) < null(L).
mergeAttr(L,X) + countOccurrences(L,X,N), -moreFrequent(L,X,N).

moreFrequent(L,X,N) <« countOccurrences(L,X,N), countOccurrences(L,X,N;),N; > N.
countOccurrences(L, X, count(<KX>>)) ¢ member(X,L), X #L .
countOccurrences(L,X,N) <« countOccurrences(L,X,N), countOccurrences(L,X,Ny),N; > N.

where the predicate countOccurrences(L, X, N) assigns to N the number of occurrences of X
in L.



The Merge Operator

Given a set of homogenized relations Sy, S, ...S,, the merge operator, introduced in [11], inte-
grates the information provided by each source relation by performing the full outer join and
then “extends” each tuple coming from each relation S; by replacing the possible null values
appearing in it with values appearing in some correlated (i.e. with the same key) tuple of all
other relations Sj, with j # 4. Let S7 and S3 be two homogenized relations over the key K, the
merge operation R = f(S1,S2) is defined by the following logic program:

r(K,Ay,...,Ay) <« s1(K,By,...,Bn),s2(K,Cy,...,Cy),max (B4, Cq, A1), ..., max(Bp,
7A 7B ) 7m B

,C maAm)-
I‘(K,Al,... m) — SQ(K,B]_,... m) Sl(K,Cl,...,Cm) Ap).

C
ax(By,Cy,Ay),...,max(By, Cp, Ap)

max(Ll,C,C).
max(B,C,B) <+ B#L.

The merging of n homogenized relations can be implemented by using the associative property
of the operator; thus, the merging of three relations f(S1,S2,S3) can be defined as applying
iteratively the above rules since f(S1, S2,S3) = f(f(S1,S52),S3).

Prioritized merge operator

In order to satisfy preference constraints, we introduce an an asymmetric binary operator,
called prioritized merge operator <1, which in the case of conflicting relations eliminates the
inconsistencies by giving preference to tuples coming from the preferred relation.

The prioritized merge operator can be easily implemented directly. Let S; and S be two
homogenized relations over the key K, the prioritized merge operation R = 57 < Ss is given by
the following logic program:

r(K, Ay, ..., An) <« s1(,By,...,Bn),s2(K,Cy,...,Cy),max(By, Cy, A1), ..., max(Bp, Cn, An).

where max has been previously defined. Note that if a new relation, say S3, has to be involved
in the integration process, the program can be reused using the tuples of r, obtained by the
merging of S and S, as the left relation and S3 as the right relation.

More general techniques

As previously shown the use of a (stratified) logic program for integrating databases makes the
merging process more flexible with respect to the use of predefined operators as it permits to
easily implement most of the integration techniques already defined in the literature and allows
writing ad hoc operators reflecting the real user needs. In this section we show how, thanks
to its specific features, the proposed extended language can be profitable used to define more
general integration techniques.

Example 11 Consider the three homogenized relations of Example 3. Assume that we want
integrate in the database the information of employees whose global salary is greater than 50 000.

salary(Name, sum(<Sal>)) < s(I,Name,Dept,City,Sal).
r(Name, Dept, City,S) < salary(Name,Sal), Sal > 50000, s(I,Name,Dept,City,S).



Note that in this case we are assuming that information coming from the different relations are
correct and that in the integrated relation the attribute Name : is not a key. O

Example 12 Considering Example 3, we want to merge relations S1, S5 and S5 in a way more
flexible respect to the result obtained with the traditional merge operators. In particular, having
two conflicting tuples, if the value of Dept is the same we want to obtain the average value of
the Salary, while if an employee is registered in two different department we take the sum of
all values of such attribute. Moreover, we assume to give no importance to conflicts on the
attribute city.

salary(Name, Dept, avg(<Sal>>»)) < s(I,Name,Dept,City,Sal).

r(Name, <Dept>>, sum(<Sal>)) <« salary(Name,Dept,Sal), s(I,Name,Dept,City,S). -

Example 13 Consider the two relations R and S denoting oriented weighted graphs whose
schemata are (From, To, Length) where the pair of attributes (From, To) is a key. The following
program P computes first the union of the two relations and next selects arcs (a, b, ¢) such that
there is no path from a to b with length ¢/ < c.

rs(From, To, Length)
rs(From, To, Length)

+ r(From, To,Length).
+ s(From, To,Length).
closure(From, To,Length)
closure(From, To,Length)

+ rs(From, To,Length).
+ rs(From,X,L1)), closure(X,To,L2), Length = L1 + L2.

tc!'(From, To,Length) ¢ rs(From,To,Length), closure(From, To,L),L < Length.
tc(From, To,Length) < rs(From,To,Length), —tc'(From, To,Length).

6 Conclusions

In this paper we have proposed a logic programming language for the integration of different
data sources. In particular, the merging of two data sources, say D; and D, is provided by
a stratified Datalog program extended with set constructors, aggregates and nondeterministic
choice. It has been proved that the use of a (stratified) logic program for integrating databases
makes the merging process more flexible with respect to the use predefined operators, as it
enables writing ad hoc operators, (“business rules”), reflecting the real user needs. Moreover
we have shown that, due to its specific features, the proposed integration framework permits to
easily express many of the merge operators already proposed in literature and that it can be
profitable used to define more general techniques. [25].
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